In our text [1] is a design procedure that applies Chebychev polynomials to the selection of current magnitudes for an evenly spaced array of identical antennas placed along the z-axis.

For an even number $$2 M$$ of identical antennas placed at positions $$\Br_m = (d/2) \lr{2 m -1} \Be_3$$, the array factor is

\label{eqn:chebychevDesign:20}
\textrm{AF}
=
\sum_{m=-N}^N I_m e^{-j k \rcap \cdot \Br_m }.

Assuming the currents are symmetric $$I_{-m} = I_m$$, with $$\rcap = (\sin\theta \cos\phi, \sin\theta \sin\phi, \cos\theta )$$, and $$u = \frac{\pi d}{\lambda} \cos\theta$$, this is

\label{eqn:chebychevDesign:40}
\begin{aligned}
\textrm{AF}
&=
\sum_{m=-N}^N I_m e^{-j k (d/2) ( 2 m -1 )\cos\theta } \\
&=
2 \sum_{m=1}^N I_m \cos\lr{ k (d/2) ( 2 m -1)\cos\theta } \\
&=
2 \sum_{m=1}^N I_m \cos\lr{ (2 m -1) u }.
\end{aligned}

This is a sum of only odd cosines, and can be expanded as a sum that includes all the odd powers of $$\cos u$$. Suppose for example that this is a four element array with $$N = 2$$. In this case the array factor has the form

\label{eqn:chebychevDesign:60}
\begin{aligned}
\textrm{AF}
&=
2 \lr{ I_1 \cos u + I_2 \lr{ 4 \cos^3 u – 3 \cos u } } \\
&=
2 \lr{ \lr{ I_1 – 3 I_2 } \cos u + 4 I_2 \cos^3 u }.
\end{aligned}

The design procedure in the text sets $$\cos u = z/z_0$$, and then equates this to $$T_3(z) = 4 z^3 – 3 z$$ to determine the current amplitudes $$I_m$$. That is

\label{eqn:chebychevDesign:80}
\frac{ 2 I_1 – 6 I_2 }{z_0} z + \frac{8 I_2}{z_0^3} z^3 = -3 z + 4 z^3,

or

\label{eqn:chebychevDesign:100}
\begin{aligned}
\begin{bmatrix}
I_1 \\
I_2
\end{bmatrix}
&=
{\begin{bmatrix}
2/z_0 & -6/z_0 \\
0 & 8/z_0^3
\end{bmatrix}}^{-1}
\begin{bmatrix}
-3 \\
4
\end{bmatrix} \\
&=
\frac{z_0}{2}
\begin{bmatrix}
3 (z_0^2 -1) \\
z_0^2
\end{bmatrix}.
\end{aligned}

The currents in the array factor are fully determined up to a scale factor, reducing the array factor to

\label{eqn:chebychevDesign:140}
\textrm{AF} = 4 z_0^3 \cos^3 u – 3 z_0 \cos u.

The zeros of this array factor are located at the zeros of

\label{eqn:chebychevDesign:120}
T_3( z_0 \cos u ) = \cos( 3 \cos^{-1} \lr{ z_0 \cos u } ),

which are at $$3 \cos^{-1} \lr{ z_0 \cos u } = \pi/2 + m \pi = \pi \lr{ m + \inv{2} }$$

\label{eqn:chebychevDesign:160}
\cos u = \inv{z_0} \cos\lr{ \frac{\pi}{3} \lr{ m + \inv{2} } } = \setlr{ 0, \pm \frac{\sqrt{3}}{2 z_0} }.

showing that the scaling factor $$z_0$$ effects the locations of the zeros. It also allows the values at the extremes $$\cos u = \pm 1$$, to increase past the $$\pm 1$$ non-scaled limit values. These effects can be explored in this Mathematica notebook, but can also be seen in fig. 1.

fig 1. T_3( z_0 x) for a few different scale factors z_0.

The scale factor can be fixed for a desired maximum power gain. For $$R \textrm{dB}$$, that will be when

\label{eqn:chebychevDesign:180}
20 \log_{10} \cosh( 3 \cosh^{-1} z_0 ) = R \textrm{dB},

or

\label{eqn:chebychevDesign:200}
z_0 = \cosh \lr{ \inv{3} \cosh^{-1} \lr{ 10^{\frac{R}{20}} } }.

For $$R = 30$$ dB (say), we have $$z_0 = 2.1$$, and

\label{eqn:chebychevDesign:220}
\textrm{AF}
= 40 \cos^3 \lr{ \frac{\pi d}{\lambda} \cos\theta } – 6.4 \cos \lr{ \frac{\pi d}{\lambda} \cos\theta }.

These are plotted in fig. 2 (linear scale), and fig. 3 (dB scale) for a couple values of $$d/\lambda$$.

fig 2. T_3 fitting of 4 element array (linear scale).

fig 3. T_3 fitting of 4 element array (dB scale).

To explore the $$d/\lambda$$ dependence try this Mathematica notebook.

# References

[1] Constantine A Balanis. Antenna theory: analysis and design. John
Wiley & Sons, 3rd edition, 2005.