In  it is mentioned that the probability flux

\begin{equation}\label{eqn:fluxAndMomentum:20}
\Bj(\Bx, t) = -\frac{i\Hbar}{2 m} \lr{ \psi^\conj \spacegrad \psi – \psi \spacegrad \psi^\conj },
\end{equation}

is related to the momentum expectation at a given time by the integral of the flux over all space

\begin{equation}\label{eqn:fluxAndMomentum:40}
\int d^3 x \Bj(\Bx, t) = \frac{\expectation{\Bp}_t}{m}.
\end{equation}

That wasn’t obvious to me at a glance, however, this can be seen by recasting the integral in bra-ket form. Let

\begin{equation}\label{eqn:fluxAndMomentum:60}
\psi(\Bx, t) = \braket{\Bx}{\psi(t)},
\end{equation}

and note that the momentum portions of the flux can be written as

\begin{equation}\label{eqn:fluxAndMomentum:80}
-i \Hbar \spacegrad \psi(\Bx, t) = \bra{\Bx} \Bp \ket{\psi(t)}.
\end{equation}

The current is therefore

\begin{equation}\label{eqn:fluxAndMomentum:100}
\begin{aligned}
\Bj(\Bx, t)
&= \frac{1}{2 m}
\lr{
\psi^\conj \bra{\Bx} \Bp \ket{\psi(t)}
+\psi {\bra{\Bx} \Bp \ket{\psi(t)} }^\conj
} \\
&= \frac{1}{2 m}
\lr{
{\braket{\Bx}{\psi(t)}}^\conj \bra{\Bx} \Bp \ket{\psi(t)}
+ \braket{\Bx}{\psi(t)} {\bra{\Bx} \Bp \ket{\psi(t)} }^\conj
} \\
&= \frac{1}{2 m}
\lr{
\braket{\psi(t)}{\Bx} \bra{\Bx} \Bp \ket{\psi(t)}
+
\bra{\psi(t)} \Bp \ket{\Bx} \braket{\Bx}{\psi(t)}
}.
\end{aligned}
\end{equation}

Integrating and noting that the spatial identity is $$1 = \int d^3 x \ket{\Bx}\bra{\Bx}$$, we have

\begin{equation}\label{eqn:fluxAndMomentum:n}
\int d^3 x \Bj(\Bx, t)
=
\bra{\psi(t)} \Bp \ket{\psi(t)},
\end{equation}

This is just the expectation of $$\Bp$$ with respect to a specific time-instance state.

# References

 Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.