For a 1D SHO

## (a)

Construct a linear combination of $$\ket{0}, \ket{1}$$ that maximizes $$\expectation{x}$$ without using wave functions.

## (b)

How does this state evolve with time?

## (c)

Evaluate $$\expectation{x}$$ using the Schrodinger picture.

## (d)

Evaluate $$\expectation{x}$$ using the Heisenberg picture.

## (e)

Evaluate $$\expectation{(\Delta x)^2}$$.

## (a)

Forming

\label{eqn:shoSuperposition:20}
\ket{\psi} = \frac{\ket{0} + \sigma \ket{1}}{\sqrt{1 + \Abs{\sigma}^2}}

the position expectation is

\label{eqn:shoSuperposition:40}
\bra{\psi} x \ket{\psi}
=
\inv{1 + \Abs{\sigma}^2} \lr{ \bra{0} + \sigma^\conj \bra{1} } \frac{x_0}{\sqrt{2}} \lr{ a^\dagger + a } \lr{ \ket{0} + \sigma \ket{1} }.

Evaluating the action of the operators on the kets, we’ve got

\label{eqn:shoSuperposition:60}
\lr{ a^\dagger + a } \lr{ \ket{0} + \sigma \ket{1} }
=
\ket{1} + \sqrt{2} \sigma \ket{2} + \sigma \ket{0}.

The $$\ket{2}$$ term is killed by the bras, leaving

\label{eqn:shoSuperposition:80}
\begin{aligned}
\expectation{x}
&=
\inv{1 + \Abs{\sigma}^2} \frac{x_0}{\sqrt{2}} \lr{ \sigma + \sigma^\conj} \\
&=
\frac{\sqrt{2} x_0 \textrm{Re} \sigma}{1 + \Abs{\sigma}^2}.
\end{aligned}

Any imaginary component in $$\sigma$$ will reduce the expectation, so we are constrained to picking a real value.

The derivative of

\label{eqn:shoSuperposition:100}
f(\sigma) = \frac{\sigma}{1 + \sigma^2},

is

\label{eqn:shoSuperposition:120}
f'(\sigma) = \frac{1 – \sigma^2}{(1 + \sigma^2)^2}.

That has zeros at $$\sigma = \pm 1$$. The second derivative is

\label{eqn:shoSuperposition:140}
f”(\sigma) = \frac{-2 \sigma (3 – \sigma^2)}{(1 + \sigma^2)^3}.

That will be negative (maximum for the extreme value) at $$\sigma = 1$$, so the linear superposition of these first two energy eigenkets that maximizes the position expectation is

\label{eqn:shoSuperposition:160}
\psi = \inv{\sqrt{2}}\lr{ \ket{0} + \ket{1} }.

That maximized position expectation is

\label{eqn:shoSuperposition:180}
\expectation{x}
=
\frac{x_0}{\sqrt{2}}.

## (b)

The time evolution is given by

\label{eqn:shoSuperposition:200}
\begin{aligned}
\ket{\Psi(t)}
&= e^{-iH t/\Hbar} \inv{\sqrt{2}}\lr{ \ket{0} + \ket{1} } \\
&= \inv{\sqrt{2}}\lr{ e^{-i(0+ \ifrac{1}{2})\Hbar \omega t/\Hbar} \ket{0} +
e^{-i(1+ \ifrac{1}{2})\Hbar \omega t/\Hbar} \ket{1} } \\
&= \inv{\sqrt{2}}\lr{ e^{-i \omega t/2} \ket{0} + e^{-3 i \omega t/2} \ket{1} }.
\end{aligned}

## (c)

The position expectation in the Schrodinger representation is

\label{eqn:shoSuperposition:220}
\begin{aligned}
\expectation{x(t)}
&=
\inv{2}
\lr{ e^{i \omega t/2} \bra{0} + e^{3 i \omega t/2} \bra{1} } \frac{x_0}{\sqrt{2}} \lr{ a^\dagger + a }
\lr{ e^{-i \omega t/2} \ket{0} + e^{-3 i \omega t/2} \ket{1} } \\
&=
\frac{x_0}{2\sqrt{2}}
\lr{ e^{i \omega t/2} \bra{0} + e^{3 i \omega t/2} \bra{1} }
\lr{ e^{-i \omega t/2} \ket{1} + e^{-3 i \omega t/2} \sqrt{2} \ket{2} + e^{-3 i \omega t/2} \ket{0} } \\
&=
\frac{x_0}{\sqrt{2}} \cos(\omega t).
\end{aligned}

## (d)

\label{eqn:shoSuperposition:240}
\begin{aligned}
\expectation{x(t)}
&=
\inv{2}
\lr{ \bra{0} + \bra{1} } \frac{x_0}{\sqrt{2}}
\lr{ a^\dagger e^{i\omega t} + a e^{-i \omega t} }
\lr{ \ket{0} + \ket{1} } \\
&=
\frac{x_0}{2 \sqrt{2}}
\lr{ \bra{0} + \bra{1} }
\lr{ e^{i\omega t} \ket{1} + \sqrt{2} e^{i\omega t} \ket{2} + e^{-i \omega t} \ket{0} } \\
&=
\frac{x_0}{\sqrt{2}} \cos(\omega t),
\end{aligned}

matching the calculation using the Schrodinger picture.

## (e)

Let’s use the Heisenberg picture for the uncertainty calculation. Using the calculation above we have

\label{eqn:shoSuperposition:260}
\begin{aligned}
\expectation{x^2}
&=
\inv{2} \frac{x_0^2}{2}
\lr{ e^{-i\omega t} \bra{1} + \sqrt{2} e^{-i\omega t} \bra{2} + e^{i \omega t} \bra{0} }
\lr{ e^{i\omega t} \ket{1} + \sqrt{2} e^{i\omega t} \ket{2} + e^{-i \omega t} \ket{0} } \\
&=
\frac{x_0^2}{4} \lr{ 1 + 2 + 1} \\
&=
x_0^2.
\end{aligned}

The uncertainty is
\label{eqn:shoSuperposition:280}
\begin{aligned}
\expectation{(\Delta x)^2}
&=
\expectation{x^2} – \expectation{x}^2 \\
&=
x_0^2 – \frac{x_0^2}{2} \cos^2(\omega t) \\
&=
\frac{x_0^2}{2} \lr{ 2 – \cos^2(\omega t) } \\
&=
\frac{x_0^2}{2} \lr{ 1 + \sin^2(\omega t) }
\end{aligned}

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.