Month: November 2016

Home office progress.

November 13, 2016 Incoherent ramblings , , , ,

We’ve had a giant cavity the room that that is now my home office space. It had been cut into the garage by the previous owner of the house to mount a CRT TV in, made the garage a lot less usable, and also let in a lot of cold. Last weekend we took it out completely:

10

and on Tuesday I framed in a new wall support, and got it into place:

98

Then sealed things up again:

432

I happened to have a sheet of water resistant board kicking around the garage, so used that:

1

and today I did the rough coat:

img_20161113_202046663

While I had some compound mixed up, I filled in a few other things in this space. Quite a while ago I fished ethernet and coax cable into my home office space, so I got the box in place for these:

img_20161113_192815192

and did a rough plastering fill of all my fishing holes:

img_20161113_201828102

It will be nice to get this space completely in order, but we’ve now made some good progress on that front.

Dipole field from multipole moment sum

November 12, 2016 math and physics play , , , , ,

[Click here for a PDF of this post with nicer formatting]

As indicated in Jackson [1], the components of the electric field can be obtained directly from the multipole moments

\begin{equation}\label{eqn:dipoleFromSphericalMoments:20}
\Phi(\Bx)
= \inv{4 \pi \epsilon_0} \sum \frac{4 \pi}{ (2 l + 1) r^{l + 1} } q_{l m} Y_{l m},
\end{equation}

so for the \( l,m \) contribution to this sum the components of the electric field are

\begin{equation}\label{eqn:dipoleFromSphericalMoments:40}
E_r
=
\inv{\epsilon_0} \sum \frac{l+1}{ (2 l + 1) r^{l + 2} } q_{l m} Y_{l m},
\end{equation}

\begin{equation}\label{eqn:dipoleFromSphericalMoments:60}
E_\theta
= -\inv{\epsilon_0} \sum \frac{1}{ (2 l + 1) r^{l + 2} } q_{l m} \partial_\theta Y_{l m}
\end{equation}

\begin{equation}\label{eqn:dipoleFromSphericalMoments:80}
\begin{aligned}
E_\phi
&= -\inv{\epsilon_0} \sum \frac{1}{ (2 l + 1) r^{l + 2} \sin\theta } q_{l m} \partial_\phi Y_{l m} \\
&= -\inv{\epsilon_0} \sum \frac{j m}{ (2 l + 1) r^{l + 2} \sin\theta } q_{l m} Y_{l m}.
\end{aligned}
\end{equation}

Here I’ve translated from CGS to SI. Let’s calculate the \( l = 1 \) electric field components directly from these expressions and check against the previously calculated results.

\begin{equation}\label{eqn:dipoleFromSphericalMoments:100}
\begin{aligned}
E_r
&=
\inv{\epsilon_0} \frac{2}{ 3 r^{3} }
\lr{
2 \lr{ -\sqrt{\frac{3}{8\pi}} }^2 \textrm{Re} \lr{
(p_x – j p_y) \sin\theta e^{j\phi}
}
+
\lr{ \sqrt{\frac{3}{4\pi}} }^2 p_z \cos\theta
} \\
&=
\frac{2}{4 \pi \epsilon_0 r^3}
\lr{
p_x \sin\theta \cos\phi + p_y \sin\theta \sin\phi + p_z \cos\theta
} \\
&=
\frac{1}{4 \pi \epsilon_0 r^3} 2 \Bp \cdot \rcap.
\end{aligned}
\end{equation}

Note that

\begin{equation}\label{eqn:dipoleFromSphericalMoments:120}
\partial_\theta Y_{11} = -\sqrt{\frac{3}{8\pi}} \cos\theta e^{j \phi},
\end{equation}

and

\begin{equation}\label{eqn:dipoleFromSphericalMoments:140}
\partial_\theta Y_{1,-1} = \sqrt{\frac{3}{8\pi}} \cos\theta e^{-j \phi},
\end{equation}

so

\begin{equation}\label{eqn:dipoleFromSphericalMoments:160}
\begin{aligned}
E_\theta
&=
-\inv{\epsilon_0} \frac{1}{ 3 r^{3} }
\lr{
2 \lr{ -\sqrt{\frac{3}{8\pi}} }^2 \textrm{Re} \lr{
(p_x – j p_y) \cos\theta e^{j\phi}
}

\lr{ \sqrt{\frac{3}{4\pi}} }^2 p_z \sin\theta
} \\
&=
-\frac{1}{4 \pi \epsilon_0 r^3}
\lr{
p_x \cos\theta \cos\phi + p_y \cos\theta \sin\phi – p_z \sin\theta
} \\
&=
-\frac{1}{4 \pi \epsilon_0 r^3} \Bp \cdot \thetacap.
\end{aligned}
\end{equation}

For the \(\phicap\) component, the \( m = 0 \) term is killed. This leaves

\begin{equation}\label{eqn:dipoleFromSphericalMoments:180}
\begin{aligned}
E_\phi
&=
-\frac{1}{\epsilon_0} \frac{1}{ 3 r^{3} \sin\theta }
\lr{
j q_{11} Y_{11} – j q_{1,-1} Y_{1,-1}
} \\
&=
-\frac{1}{3 \epsilon_0 r^{3} \sin\theta }
\lr{
j q_{11} Y_{11} – j (-1)^{2m} q_{11}^\conj Y_{11}^\conj
} \\
&=
\frac{2}{\epsilon_0} \frac{1}{ 3 r^{3} \sin\theta }
\textrm{Im} q_{11} Y_{11} \\
&=
\frac{2}{3 \epsilon_0 r^{3} \sin\theta }
\textrm{Im} \lr{
\lr{ -\sqrt{\frac{3}{8\pi}} }^2 (p_x – j p_y) \sin\theta e^{j \phi}
} \\
&=
\frac{1}{ 4 \pi \epsilon_0 r^{3} }
\textrm{Im} \lr{
(p_x – j p_y) e^{j \phi}
} \\
&=
\frac{1}{ 4 \pi \epsilon_0 r^{3} }
\lr{
p_x \sin\phi – p_y \cos\phi
} \\
&=
-\frac{\Bp \cdot \phicap}{ 4 \pi \epsilon_0 r^3}.
\end{aligned}
\end{equation}

That is
\begin{equation}\label{eqn:dipoleFromSphericalMoments:200}
\boxed{
\begin{aligned}
E_r &=
\frac{2}{4 \pi \epsilon_0 r^3}
\Bp \cdot \rcap \\
E_\theta &= –
\frac{1}{4 \pi \epsilon_0 r^3}
\Bp \cdot \thetacap \\
E_\phi &= –
\frac{1}{4 \pi \epsilon_0 r^3}
\Bp \cdot \phicap.
\end{aligned}
}
\end{equation}

These are consistent with equations (4.12) from the text for when \( \Bp \) is aligned with the z-axis.

Observe that we can sum each of the projections of \( \BE \) to construct the total electric field due to this \( l = 1 \) term of the multipole moment sum

\begin{equation}\label{eqn:dipoleFromSphericalMoments:n}
\begin{aligned}
\BE
&=
\frac{1}{4 \pi \epsilon_0 r^3}
\lr{
2 \rcap (\Bp \cdot \rcap)

\phicap ( \Bp \cdot \phicap)

\thetacap ( \Bp \cdot \thetacap)
} \\
&=
\frac{1}{4 \pi \epsilon_0 r^3}
\lr{
3 \rcap (\Bp \cdot \rcap)

\Bp
},
\end{aligned}
\end{equation}

which recovers the expected dipole moment approximation.

References

[1] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

New book arrived in the mail today

November 11, 2016 Incoherent ramblings ,

Usually, I’m really eager to open a package containing a book. This time I wasn’t so sure I actually wanted to open this mail item, since I knew exactly what it contained:

img_20161111_202100704

I’ve got work to do related to C, PL/1, and COBOL.  I don’t have the courage to buy myself any sort of COBOL book.  I saw COBOL once and my eyes burned.  My eyes are watering even thinking back to that day.  Unfortunately, at a glance, PL/1 doesn’t look much better than my nightmares of COBOL.

Vector wave equation in spherical coordinates

November 10, 2016 math and physics play , , ,

[Click here for a PDF of this post with nicer formatting]

For a vector \( \BA \) in spherical coordinates, let’s compute the Laplacian

\begin{equation}\label{eqn:vectorWaveEquationSpherical:20}
\spacegrad^2 \BA,
\end{equation}

to see the form of the wave equation. The spherical vector representation has a curvilinear basis
\begin{equation}\label{eqn:vectorWaveEquationSpherical:40}
\BA = \rcap A_r + \thetacap A_\theta + \phicap A_\phi,
\end{equation}

and the spherical Laplacian has been found to have the representation

\begin{equation}\label{eqn:vectorWaveEquationSpherical:60}
\spacegrad^2 \psi
=
\inv{r^2} \PD{r}{} \lr{ r^2 \PD{r}{ \psi} }
+ \frac{1}{r^2 \sin\theta} \PD{\theta}{} \lr{ \sin\theta \PD{\theta}{ \psi } }
+ \frac{1}{r^2 \sin^2\theta} \PDSq{\phi}{ \psi}.
\end{equation}

Evaluating the Laplacian will require the following curvilinear basis derivatives

\begin{equation}\label{eqn:vectorWaveEquationSpherical:80}
\begin{aligned}
\partial_\theta \rcap &= \thetacap \\
\partial_\theta \thetacap &= -\rcap \\
\partial_\theta \phicap &= 0 \\
\partial_\phi \rcap &= S_\theta \phicap \\
\partial_\phi \thetacap &= C_\theta \phicap \\
\partial_\phi \phicap &= -\rcap S_\theta – \thetacap C_\theta.
\end{aligned}
\end{equation}

We’ll need to evaluate a number of derivatives. Starting with the \( \rcap \) components

\begin{equation}\label{eqn:vectorWaveEquationSpherical:120}
\partial_r \lr{ r^2 \partial_r \lr{ \rcap \psi} }
=
\rcap \partial_r \lr{ r^2 \partial_r \psi }
\end{equation}

\begin{equation}\label{eqn:vectorWaveEquationSpherical:140}
\begin{aligned}
\partial_\theta \lr{ S_\theta \partial_\theta \lr{ \rcap \psi } }
&=
\partial_\theta \lr{ S_\theta (\thetacap \psi + \rcap \partial_\theta \psi ) } \\
&=
C_\theta (\thetacap \psi + \rcap \partial_\theta \psi )
+ S_\theta \partial_\theta (\thetacap \psi + \rcap \partial_\theta \psi ) \\
&=
C_\theta (\thetacap \psi + \rcap \partial_\theta \psi )
+ S_\theta \partial_\theta ((\partial_\theta \thetacap) \psi + (\partial_\theta \rcap) \partial_\theta \psi )
+ S_\theta \partial_\theta (\thetacap \partial_\theta \psi + \rcap \partial_{\theta \theta} \psi ) \\
&=
C_\theta (\thetacap \psi + \rcap \partial_\theta \psi )
+ S_\theta ((-\rcap) \psi + (\thetacap) \partial_\theta \psi )
+ S_\theta (\thetacap \partial_\theta \psi + \rcap \partial_{\theta \theta} \psi ) \\
&=
\rcap \lr{
C_\theta \partial_\theta \psi
– S_\theta \psi
+ S_\theta \partial_{\theta \theta} \psi
}
+\thetacap \lr{
C_\theta \psi
+ 2 S_\theta \partial_\theta \psi
}
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:vectorWaveEquationSpherical:160}
\begin{aligned}
\partial_{\phi \phi} \lr{ \rcap \psi}
&=
\partial_\phi \lr{ (\partial_\phi \rcap) \psi + \rcap \partial_\phi \psi } \\
&=
\partial_\phi \lr{ (S_\theta \phicap) \psi + \rcap \partial_\phi \psi } \\
&=
S_\theta \partial_\phi (\phicap \psi)
+ \partial_\phi \lr{ \rcap \partial_\phi \psi } \\
&=
S_\theta (\partial_\phi \phicap) \psi
+ S_\theta \phicap \partial_\phi \psi
+ (\partial_\phi \rcap) \partial_\phi \psi
+ \rcap \partial_{\phi\phi} \psi \\
&=
S_\theta (-S_\theta \rcap – C_\theta \thetacap) \psi
+ S_\theta \phicap \partial_\phi \psi
+ (S_\theta \phicap) \partial_\phi \psi
+ \rcap \partial_{\phi\phi} \psi \\
&=
\rcap \lr{
– S_\theta^2 \psi
+ \partial_{\phi\phi} \psi
}
+
\thetacap \lr{
– S_\theta C_\theta \psi
}
+
\phicap \lr{
2 S_\theta \phicap \partial_\phi \psi
}
\end{aligned}
\end{equation}

This gives

\begin{equation}\label{eqn:vectorWaveEquationSpherical:180}
\begin{aligned}
\spacegrad^2 (\rcap A_r)
&=
\rcap \lr{
\inv{r^2}
\partial_r \lr{ r^2 \partial_r A_r }
+
\inv{r^2 S_\theta}
\lr{
C_\theta \partial_\theta A_r
– S_\theta A_r
+ S_\theta \partial_{\theta \theta} A_r
}
+ \inv{r^2 S_\theta^2}
\lr{
– S_\theta^2 A_r
+ \partial_{\phi\phi} A_r
}
} \\
&\quad +
\thetacap
\lr{
\inv{r^2 S_\theta}
\lr{
C_\theta A_r
+ 2 S_\theta \partial_\theta A_r
}

\inv{r^2 S_\theta}
S_\theta C_\theta A_r
} \\
&\quad +
\phicap
\lr{
\inv{r^2 S_\theta^2}
2 S_\theta \partial_\phi A_r
} \\
&=
\rcap \lr{
\spacegrad^2 A_r
-\frac{2}{r^2 } A_r
}
+
\frac{\thetacap}{r^2}
\lr{
\frac{C_\theta}{S_\theta} A_r
+ 2 \partial_\theta A_r
– C_\theta A_r
}
+
\phicap
\frac{2}{r^2 S_\theta} \partial_\phi A_r.
\end{aligned}
\end{equation}

Next, let’s compute the derivatives of the \( \thetacap \) projection.

\begin{equation}\label{eqn:vectorWaveEquationSpherical:220}
\partial_r \lr{ r^2 \partial_r \lr{ \thetacap \psi} }
=
\thetacap \partial_r \lr{ r^2 \partial_r \psi }
\end{equation}

\begin{equation}\label{eqn:vectorWaveEquationSpherical:240}
\begin{aligned}
\partial_\theta \lr{ S_\theta \partial_\theta \lr{ \thetacap \psi } }
&=
\partial_\theta \lr{ S_\theta
\lr{
(\partial_\theta \thetacap ) \psi
+\thetacap \partial_\theta \psi
}
} \\
&=
\partial_\theta
\lr{ S_\theta
\lr{
(-\rcap ) \psi
+\thetacap \partial_\theta \psi
}
} \\
&=
C_\theta \lr{
-\rcap \psi
+\thetacap \partial_\theta \psi
}
+
S_\theta
\lr{
-(\partial_\theta \rcap) \psi
-\rcap \partial_\theta \psi
+(\partial_\theta \thetacap) \partial_\theta \psi
+\thetacap \partial_{\theta \theta} \psi
} \\
&=
C_\theta \lr{
-\rcap \psi
+\thetacap \partial_\theta \psi
}
+
S_\theta
\lr{
-(\thetacap) \psi
-\rcap \partial_\theta \psi
+(-\rcap) \partial_\theta \psi
+\thetacap \partial_{\theta \theta} \psi
} \\
&=
\rcap \lr{
-C_\theta \psi
-2 S_\theta \partial_\theta \psi
}
+
\thetacap \lr{
+C_\theta \partial_\theta \psi
-S_\theta \psi
+S_\theta \partial_{\theta \theta} \psi
} \\
&=
\rcap \lr{
-C_\theta \psi
-2 S_\theta \partial_\theta \psi
}
+
\thetacap \lr{
+\partial_\theta (S_\theta \partial_\theta \psi)
-S_\theta \psi
}
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:vectorWaveEquationSpherical:260}
\begin{aligned}
\partial_{\phi \phi} \lr{ \thetacap \psi}
&=
\partial_{\phi} \lr{
(\partial_\phi \thetacap) \psi
+\thetacap \partial_\phi \psi
} \\
&=
\partial_{\phi} \lr{
(C_\theta \phicap) \psi
+\thetacap \partial_\phi \psi
} \\
&=
C_\theta \partial_{\phi} (\phicap \psi)
+
\partial_{\phi} ( \thetacap \partial_\phi \psi ) \\
&=
C_\theta (\partial_\phi \phicap) \psi
+C_\theta \phicap \partial_{\phi} \psi
+ (\partial_\phi \thetacap) \partial_\phi \psi
+\thetacap \partial_{\phi\phi} \psi \\
&=
C_\theta (-\rcap S_\theta – \thetacap C_\theta) \psi
+C_\theta \phicap \partial_{\phi} \psi
+ (C_\theta \phicap) \partial_\phi \psi
+\thetacap \partial_{\phi\phi} \psi \\
&=
-\rcap C_\theta S_\theta \psi
+\thetacap \lr{
-C_\theta C_\theta \psi
+\partial_{\phi\phi} \psi
}
+2 \phicap C_\theta \partial_\phi \psi,
\end{aligned}
\end{equation}

which gives
\begin{equation}\label{eqn:vectorWaveEquationSpherical:360}
\begin{aligned}
\spacegrad^2 (\thetacap A_\theta)
&=
\rcap
\lr{
\inv{r^2 S_\theta}
\lr{
-C_\theta A_\theta
-2 S_\theta \partial_\theta A_\theta
}

\inv{r^2 S_\theta^2}
C_\theta S_\theta A_\theta
} \\
&\quad +
\thetacap \lr{
\inv{r^2} \partial_r \lr{ r^2 \partial_r A_\theta }
+
\inv{r^2 S_\theta}
\lr{
+\partial_\theta (S_\theta \partial_\theta A_\theta)
-S_\theta A_\theta
}
+\inv{r^2 S_\theta^2}
\lr{
-C_\theta C_\theta A_\theta
+\partial_{\phi\phi} A_\theta
}
} \\
&\quad +
\phicap \lr{
\inv{r^2 S_\theta^2}
2 C_\theta \partial_\phi A_\theta
} \\
&=
-2 \rcap
\inv{r^2 S_\theta}
\partial_\theta (S_\theta A_\theta)
+
\thetacap \lr{
\spacegrad^2 A_\theta
-\inv{r^2}
A_\theta
-\inv{r^2 S_\theta^2} C_\theta^2 A_\theta
}
+
2 \phicap \lr{
\inv{r^2 S_\theta^2}
C_\theta \partial_\phi A_\theta
}.
\end{aligned}
\end{equation}

Finally, we can compute the derivatives of the \( \phicap \) projection.

\begin{equation}\label{eqn:vectorWaveEquationSpherical:300}
\partial_r \lr{ r^2 \partial_r \lr{ \phicap \psi} }
=
\phicap \partial_r \lr{ r^2 \partial_r \psi }
\end{equation}

\begin{equation}\label{eqn:vectorWaveEquationSpherical:320}
\partial_\theta \lr{ S_\theta \partial_\theta \lr{ \phicap \psi } }
=
\phicap \partial_\theta \lr{ S_\theta \partial_\theta \psi }
\end{equation}

\begin{equation}\label{eqn:vectorWaveEquationSpherical:340}
\begin{aligned}
\partial_{\phi \phi} \lr{ \phicap \psi}
&=
\partial_{\phi} \lr{
(\partial_\phi \phicap) \psi
+\phicap \partial_\phi \psi
} \\
&=
\partial_{\phi} \lr{
(-\rcap S_\theta – \thetacap C_\theta) \psi
+\phicap \partial_\phi \psi
} \\
&=
-((\partial_\phi \rcap) S_\theta + (\partial_\phi \thetacap) C_\theta) \psi
-(\rcap S_\theta + \thetacap C_\theta) \partial_\phi \psi
+(\partial_\phi \phicap \partial_\phi \psi
+\phicap \partial_{\phi \phi} \psi \\
&=
-((S_\theta \phicap) S_\theta + (C_\theta \phicap) C_\theta) \psi
-(\rcap S_\theta + \thetacap C_\theta) \partial_\phi \psi
+(-\rcap S_\theta – \thetacap C_\theta) \partial_\phi \psi
+\phicap \partial_{\phi \phi} \psi \\
&=
– 2 \rcap S_\theta \partial_\phi \psi
– 2 \thetacap C_\theta \partial_\phi \psi
+ \phicap \lr{
\partial_{\phi \phi} \psi
-\psi
},
\end{aligned}
\end{equation}

which gives
\begin{equation}\label{eqn:vectorWaveEquationSpherical:380}
\begin{aligned}
\spacegrad^2 \lr{ \phicap A_\phi }
&=
-2 \rcap \inv{r^2 S_\theta} \partial_\phi A_\phi
-2 \thetacap \inv{r^2 S_\theta^2} C_\theta \partial_\phi A_\phi \\
&\quad +
\phicap \lr{
\inv{r^2}
\partial_r \lr{ r^2 \partial_r A_\phi }
+
\inv{r^2 S_\theta}
\partial_\theta \lr{ S_\theta \partial_\theta A_\phi }
+
\inv{r^2 S_\theta^2}
\lr{
\partial_{\phi \phi} A_\phi -A_\phi
}
} \\
&=
-2 \rcap \inv{r^2 S_\theta} \partial_\phi A_\phi
-2 \thetacap \inv{r^2 S_\theta^2} C_\theta \partial_\phi A_\phi
+
\phicap \lr{
\spacegrad^2 A_\phi – \inv{r^2} A_\phi
}.
\end{aligned}
\end{equation}

The vector Laplacian resolves into three augmented scalar wave equations, all highly coupled

\begin{equation}\label{eqn:vectorWaveEquationSpherical:420}
\boxed{
\begin{aligned}
\rcap \cdot \lr{ \spacegrad^2 \BA }
&=
\spacegrad^2 A_r
-\frac{2}{r^2 } A_r
– \frac{2}{r^2 S_\theta} \partial_\theta (S_\theta A_\theta)
– \frac{2}{r^2 S_\theta} \partial_\phi A_\phi \\
\thetacap \cdot \lr{ \spacegrad^2 \BA }
&=
\frac{1}{r^2} \frac{C_\theta}{S_\theta} A_r
+ \frac{2}{r^2} \partial_\theta A_r
– \frac{1}{r^2} C_\theta A_r
+ \spacegrad^2 A_\theta
– \inv{r^2} A_\theta
– \inv{r^2 S_\theta^2} C_\theta^2 A_\theta
-2 \inv{r^2 S_\theta^2} C_\theta \partial_\phi A_\phi \\
\phicap \cdot \lr{ \spacegrad^2 \BA }
&=
\frac{2}{r^2 S_\theta} \partial_\phi A_r
+ \frac{2}{r^2 S_\theta^2} C_\theta \partial_\phi A_\theta
+ \spacegrad^2 A_\phi – \inv{r^2} A_\phi.
\end{aligned}
}
\end{equation}

I’d guess one way to decouple these equations would be to impose a constraint that allows all the non-wave equation terms in one of the component equations to be killed, and then substitute that constraint into the remaining equations. Let’s try one such constraint

\begin{equation}\label{eqn:vectorWaveEquationSpherical:480}
A_r
=
– \inv{S_\theta} \partial_\theta (S_\theta A_\theta)
– \inv{S_\theta} \partial_\phi A_\phi.
\end{equation}

This gives

\begin{equation}\label{eqn:vectorWaveEquationSpherical:520}
\begin{aligned}
\rcap \cdot \lr{ \spacegrad^2 \BA }
&=
\spacegrad^2 A_r \\
\thetacap \cdot \lr{ \spacegrad^2 \BA }
&=
\lr{
\frac{1}{r^2} \frac{C_\theta}{S_\theta}
+ \frac{2}{r^2} \partial_\theta
– \frac{1}{r^2} C_\theta
}
\lr{
– \inv{S_\theta} \partial_\theta (S_\theta A_\theta)
– \inv{S_\theta} \partial_\phi A_\phi
} \\
&\quad+ \spacegrad^2 A_\theta
– \inv{r^2} A_\theta
– \inv{r^2 S_\theta^2} C_\theta^2 A_\theta
-\frac{2}{r^2 S_\theta^2} C_\theta \partial_\phi A_\phi \\
\phicap \cdot \lr{ \spacegrad^2 \BA }
&=
– \frac{2}{r^2 S_\theta} \partial_\phi
\lr{
\inv{S_\theta} \partial_\theta (S_\theta A_\theta)
+ \inv{S_\theta} \partial_\phi A_\phi
}
+ \frac{2}{r^2 S_\theta^2} C_\theta \partial_\phi A_\theta
+ \spacegrad^2 A_\phi – \inv{r^2} A_\phi \\
&=
-\frac{2}{r^2 S_\theta} \partial_\theta A_\theta
-\frac{2}{r^2 S_\theta^2} \partial_{\phi\phi} A_\theta
+ \spacegrad^2 A_\phi – \inv{r^2} A_\phi
\end{aligned}
\end{equation}

It looks like some additional cancellations may be had in the \( \thetacap \) projection of this constrained vector Laplacian. I’m not inclined to try to take this reduction any further without a thorough check of all the algebra (using Mathematica to do so would make sense).

I also guessing that such a solution might be how the \( \textrm{TE}^r \) and \( \textrm{TM}^r \) modes were defined, but that doesn’t appear to be the case according to [1]. There the wave equation is formulated in terms of the vector potentials (picking one to be zero and the other to be radial only). The solution obtained from such a potential wave equation then directly defines the \( \textrm{TE}^r \) and \( \textrm{TM}^r \) modes. It would be interesting to see how the modes derived in that analysis transform with application of the vector Laplacian derived above.

References

[1] Constantine A Balanis. Advanced engineering electromagnetics. Wiley New York, 1989.

Spherical gradient, divergence, curl and Laplacian

November 9, 2016 math and physics play , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Unit vectors

Two of the spherical unit vectors we can immediately write by inspection.

\begin{equation}\label{eqn:sphericalLaplacian:20}
\begin{aligned}
\rcap &= \Be_1 \sin\theta \cos\phi + \Be_2 \sin\theta \sin\phi + \Be_3 \cos\theta \\
\phicap &= -\Be_1 \sin\theta + \Be_2 \cos\phi
\end{aligned}
\end{equation}

We can compute \( \thetacap \) by utilizing the right hand triplet property

\begin{equation}\label{eqn:sphericalLaplacian:40}
\begin{aligned}
\thetacap
&=
\phicap \cross \rcap \\
&=
\begin{vmatrix}
\Be_1 & \Be_2 & \Be_3 \\
-S_\phi & C_\phi & 0 \\
S_\theta C_\phi & S_\theta S_\phi & C_\theta \\
\end{vmatrix} \\
&=
\Be_1 \lr{ C_\theta C_\phi }
+\Be_2 \lr{ C_\theta S_\phi }
+\Be_3 \lr{ -S_\theta \lr{ S_\phi^2 + C_\phi^2 } } \\
&=
\Be_1 \cos\theta \cos\phi
+\Be_2 \cos\theta \sin\phi
-\Be_3 \sin\theta.
\end{aligned}
\end{equation}

Here I’ve used \( C_\theta = \cos\theta, S_\phi = \sin\phi, \cdots \) as a convenient shorthand. Observe that with \( i = \Be_1 \Be_2 \), these unit vectors admit a small factorization that makes further manipulation easier

\begin{equation}\label{eqn:sphericalLaplacian:80}
\boxed{
\begin{aligned}
\rcap &= \Be_1 e^{i\phi} \sin\theta + \Be_3 \cos\theta \\
\thetacap &= \cos\theta \Be_1 e^{i\phi} – \sin\theta \Be_3 \\
\phicap &= \Be_2 e^{i\phi}
\end{aligned}
}
\end{equation}

It should also be the case that \( \rcap \thetacap \phicap = I \), where \( I = \Be_1 \Be_2 \Be_3 = \Be_{123}\) is the \R{3} pseudoscalar, which is straightforward to check

\begin{equation}\label{eqn:sphericalLaplacian:60}
\begin{aligned}
\rcap \thetacap \phicap
&=
\lr{ \Be_1 e^{i\phi} \sin\theta + \Be_3 \cos\theta }
\lr{ \cos\theta \Be_1 e^{i\phi} – \sin\theta \Be_3 }
\Be_2 e^{i\phi} \\
&=
\lr{ \sin\theta \cos\theta – \cos\theta \sin\theta + \Be_{31} e^{i\phi} \lr{ \cos^2\theta + \sin^2\theta } }
\Be_2 e^{i\phi} \\
&=
\Be_{31} \Be_2 e^{-i\phi} e^{i\phi} \\
&=
\Be_{123}.
\end{aligned}
\end{equation}

This property could also have been used to compute \(\thetacap\).

Gradient

To compute the gradient, note that the coordinate vectors for the spherical parameterization are
\begin{equation}\label{eqn:sphericalLaplacian:120}
\begin{aligned}
\Bx_r
&= \PD{r}{\Br} \\
&= \PD{r}{\lr{r \rcap}} \\
&= \rcap + r \PD{r}{\rcap} \\
&= \rcap,
\end{aligned}
\end{equation}
\begin{equation}\label{eqn:sphericalLaplacian:140}
\begin{aligned}
\Bx_\theta
&= \PD{\theta}{\lr{r \rcap} } \\
&= r \PD{\theta}{} \lr{ S_\theta \Be_1 e^{i\phi} + C_\theta \Be_3 } \\
&= r \PD{\theta}{} \lr{ C_\theta \Be_1 e^{i\phi} – S_\theta \Be_3 } \\
&= r \thetacap,
\end{aligned}
\end{equation}
\begin{equation}\label{eqn:sphericalLaplacian:160}
\begin{aligned}
\Bx_\phi
&= \PD{\phi}{\lr{r \rcap} } \\
&= r \PD{\phi}{} \lr{ S_\theta \Be_1 e^{i\phi} + C_\theta \Be_3 } \\
&= r S_\theta \Be_2 e^{i\phi} \\
&= r \sin\theta \phicap.
\end{aligned}
\end{equation}

Since these are all normal, the dual vectors defined by \( \Bx^j \cdot \Bx_k = \delta^j_k \), can be obtained by inspection
\begin{equation}\label{eqn:sphericalLaplacian:180}
\begin{aligned}
\Bx^r &= \rcap \\
\Bx^\theta &= \inv{r} \thetacap \\
\Bx^\phi &= \inv{r \sin\theta} \phicap.
\end{aligned}
\end{equation}

The gradient follows immediately
\begin{equation}\label{eqn:sphericalLaplacian:200}
\spacegrad =
\Bx^r \PD{r}{} +
\Bx^\theta \PD{\theta}{} +
\Bx^\phi \PD{\phicap}{},
\end{equation}

or
\begin{equation}\label{eqn:sphericalLaplacian:240}
\boxed{
\spacegrad
=
\rcap \PD{r}{} +
\frac{\thetacap}{r} \PD{\theta}{} +
\frac{\phicap}{r\sin\theta} \PD{\phicap}{}.
}
\end{equation}

More information on this general dual-vector technique of computing the gradient in curvilinear coordinate systems can be found in
[2].

Partials

To compute the divergence, curl and Laplacian, we’ll need the partials of each of the unit vectors \( \PDi{\theta}{\rcap}, \PDi{\phi}{\rcap}, \PDi{\theta}{\thetacap}, \PDi{\phi}{\thetacap}, \PDi{\phi}{\phicap} \).

The \( \thetacap \) partials are

\begin{equation}\label{eqn:sphericalLaplacian:260}
\begin{aligned}
\PD{\theta}{\thetacap}
&=
\PD{\theta}{} \lr{
C_\theta \Be_1 e^{i\phi} – S_\theta \Be_3
} \\
&=
-S_\theta \Be_1 e^{i\phi} – C_\theta \Be_3 \\
&=
-\rcap,
\end{aligned}
\end{equation}
\begin{equation}\label{eqn:sphericalLaplacian:280}
\begin{aligned}
\PD{\phi}{\thetacap}
&=
\PD{\phi}{} \lr{
C_\theta \Be_1 e^{i\phi} – S_\theta \Be_3
} \\
&=
C_\theta \Be_2 e^{i\phi} \\
&=
C_\theta \phicap.
\end{aligned}
\end{equation}

The \( \phicap \) partials are

\begin{equation}\label{eqn:sphericalLaplacian:300}
\begin{aligned}
\PD{\theta}{\phicap}
&=
\PD{\theta}{} \Be_2 e^{i\phi} \\
&=
0.
\end{aligned}
\end{equation}
\begin{equation}\label{eqn:sphericalLaplacian:320}
\begin{aligned}
\PD{\phi}{\phicap}
&=
\PD{\phi}{} \Be_2 e^{i \phi} \\
&=
-\Be_1 e^{i \phi} \\
&=
-\rcap \gpgradezero{ \rcap \Be_1 e^{i \phi} }
– \thetacap \gpgradezero{ \thetacap \Be_1 e^{i \phi} }
– \phicap \gpgradezero{ \phicap \Be_1 e^{i \phi} } \\
&=
-\rcap \gpgradezero{ \lr{
\Be_1 e^{i\phi} S_\theta + \Be_3 C_\theta
} \Be_1 e^{i \phi} }
– \thetacap \gpgradezero{ \lr{
C_\theta \Be_1 e^{i\phi} – S_\theta \Be_3
} \Be_1 e^{i \phi} } \\
&=
-\rcap \gpgradezero{ e^{-i\phi} S_\theta e^{i \phi} }
– \thetacap \gpgradezero{ C_\theta e^{-i\phi} e^{i \phi} } \\
&=
-\rcap S_\theta
– \thetacap C_\theta.
\end{aligned}
\end{equation}

The \( \rcap \) partials are were computed as a side effect of evaluating \( \Bx_\theta \), and \( \Bx_\phi \), and are

\begin{equation}\label{eqn:sphericalLaplacian:340}
\PD{\theta}{\rcap}
=
\thetacap,
\end{equation}
\begin{equation}\label{eqn:sphericalLaplacian:360}
\PD{\phi}{\rcap}
=
S_\theta \phicap.
\end{equation}

In summary
\begin{equation}\label{eqn:sphericalLaplacian:380}
\boxed{
\begin{aligned}
\partial_{\theta}{\rcap} &= \thetacap \\
\partial_{\phi}{\rcap} &= S_\theta \phicap \\
\partial_{\theta}{\thetacap} &= -\rcap \\
\partial_{\phi}{\thetacap} &= C_\theta \phicap \\
\partial_{\theta}{\phicap} &= 0 \\
\partial_{\phi}{\phicap} &= -\rcap S_\theta – \thetacap C_\theta.
\end{aligned}
}
\end{equation}

Divergence and curl.

The divergence and curl can be computed from the vector product of the spherical coordinate gradient and the spherical representation of a vector. That is

\begin{equation}\label{eqn:sphericalLaplacian:400}
\spacegrad \BA
= \spacegrad \cdot \BA + \spacegrad \wedge \BA
= \spacegrad \cdot \BA + I \spacegrad \cross \BA.
\end{equation}

That gradient vector product is

\begin{equation}\label{eqn:sphericalLaplacian:420}
\begin{aligned}
\spacegrad \BA
&=
\lr{
\rcap \partial_{r}
+ \frac{\thetacap}{r} \partial_{\theta}
+ \frac{\phicap}{rS_\theta} \partial_{\phi}
}
\lr{ \rcap A_r + \thetacap A_\theta + \phicap A_\phi} \\
&=
\rcap \partial_{r}
\lr{ \rcap A_r + \thetacap A_\theta + \phicap A_\phi} \\
&+ \frac{\thetacap}{r} \partial_{\theta}
\lr{ \rcap A_r + \thetacap A_\theta + \phicap A_\phi} \\
&+ \frac{\phicap}{rS_\theta} \partial_{\phicap}
\lr{ \rcap A_r + \thetacap A_\theta + \phicap A_\phi} \\
&=
\lr{ \partial_r A_r + \rcap \thetacap \partial_r A_\theta + \rcap \phicap \partial_r A_\phi} \\
&+ \frac{1}{r}
\lr{
\thetacap (\partial_\theta \rcap) A_r + \thetacap (\partial_\theta \thetacap) A_\theta + \thetacap (\partial_\theta \phicap) A_\phi
+\thetacap \rcap \partial_\theta A_r + \partial_\theta A_\theta + \thetacap \phicap \partial_\theta A_\phi
} \\
&+ \frac{1}{rS_\theta}
\lr{
\phicap (\partial_\phi \rcap) A_r + \phicap (\partial_\phi \thetacap) A_\theta + \phicap (\partial_\phi \phicap) A_\phi
+\phicap \rcap \partial_\phi A_r + \phicap \thetacap \partial_\phi A_\theta + \partial_\phi A_\phi
} \\
&=
\lr{ \partial_r A_r + \rcap \thetacap \partial_r A_\theta + \rcap \phicap \partial_r A_\phi} \\
&+ \frac{1}{r}
\lr{
\thetacap (\thetacap) A_r + \thetacap (-\rcap) A_\theta + \thetacap (0) A_\phi
+\thetacap \rcap \partial_\theta A_r + \partial_\theta A_\theta + \thetacap \phicap \partial_\theta A_\phi
} \\
&+ \frac{1}{r S_\theta}
\lr{
\phicap (S_\theta \phicap) A_r + \phicap (C_\theta \phicap) A_\theta – \phicap (\rcap S_\theta + \thetacap C_\theta) A_\phi
+\phicap \rcap \partial_\phi A_r + \phicap \thetacap \partial_\phi A_\theta + \partial_\phi A_\phi
}.
\end{aligned}
\end{equation}

The scalar component of this is the divergence
\begin{equation}\label{eqn:sphericalLaplacian:440}
\begin{aligned}
\spacegrad \cdot \BA
&=
\partial_r A_r
+ \frac{A_r}{r}
+ \inv{r} \partial_\theta A_\theta
+ \frac{1}{r S_\theta}
\lr{ S_\theta A_r + C_\theta A_\theta + \partial_\phi A_\phi
} \\
&=
\partial_r A_r
+ 2 \frac{A_r}{r}
+ \inv{r} \partial_\theta A_\theta
+ \frac{1}{r S_\theta}
C_\theta A_\theta
+ \frac{1}{r S_\theta} \partial_\phi A_\phi \\
&=
\partial_r A_r
+ 2 \frac{A_r}{r}
+ \inv{r} \partial_\theta A_\theta
+ \frac{1}{r S_\theta}
C_\theta A_\theta
+ \frac{1}{r S_\theta} \partial_\phi A_\phi,
\end{aligned}
\end{equation}

which can be factored as
\begin{equation}\label{eqn:sphericalLaplacian:460}
\boxed{
\spacegrad \cdot \BA
=
\inv{r^2} \partial_r (r^2 A_r)
+ \inv{r S_\theta} \partial_\theta (S_\theta A_\theta)
+ \frac{1}{r S_\theta} \partial_\phi A_\phi.
}
\end{equation}

The bivector grade of \( \spacegrad \BA \) is the bivector curl
\begin{equation}\label{eqn:sphericalLaplacian:480}
\begin{aligned}
\spacegrad \wedge \BA
&=
\lr{
\rcap \thetacap \partial_r A_\theta + \rcap \phicap \partial_r A_\phi
} \\
&\quad + \frac{1}{r}
\lr{
\thetacap (-\rcap) A_\theta
+\thetacap \rcap \partial_\theta A_r + \thetacap \phicap \partial_\theta A_\phi
} \\
&\quad +
\frac{1}{r S_\theta}
\lr{
-\phicap (\rcap S_\theta + \thetacap C_\theta) A_\phi
+\phicap \rcap \partial_\phi A_r + \phicap \thetacap \partial_\phi A_\theta
} \\
&=
\lr{
\rcap \thetacap \partial_r A_\theta – \phicap \rcap \partial_r A_\phi
} \\
&\quad + \frac{1}{r}
\lr{
\rcap \thetacap A_\theta
-\rcap \thetacap \partial_\theta A_r + \thetacap \phicap \partial_\theta A_\phi
} \\
&\quad +
\frac{1}{r S_\theta}
\lr{
-\phicap \rcap S_\theta A_\phi + \thetacap \phicap C_\theta A_\phi
+\phicap \rcap \partial_\phi A_r – \thetacap \phicap \partial_\phi A_\theta
} \\
&=
\thetacap \phicap \lr{
\inv{r S_\theta} C_\theta A_\phi
+\frac{1}{r} \partial_\theta A_\phi
-\frac{1}{r S_\theta} \partial_\phi A_\theta
} \\
&\quad +\phicap \rcap \lr{
-\partial_r A_\phi
+
\frac{1}{r S_\theta}
\lr{
-S_\theta A_\phi
+ \partial_\phi A_r
}
} \\
&\quad +\rcap \thetacap \lr{
\partial_r A_\theta
+ \frac{1}{r} A_\theta
– \inv{r} \partial_\theta A_r
} \\
&=
I
\rcap \lr{
\inv{r S_\theta} \partial_\theta (S_\theta A_\phi)
-\frac{1}{r S_\theta} \partial_\phi A_\theta
}
+ I \thetacap \lr{
\frac{1}{r S_\theta} \partial_\phi A_r
-\inv{r} \partial_r (r A_\phi)
}
+ I \phicap \lr{
\inv{r} \partial_r (r A_\theta)
– \inv{r} \partial_\theta A_r
}
\end{aligned}
\end{equation}

This gives
\begin{equation}\label{eqn:sphericalLaplacian:500}
\boxed{
\spacegrad \cross \BA
=
\rcap \lr{
\inv{r S_\theta} \partial_\theta (S_\theta A_\phi)
-\frac{1}{r S_\theta} \partial_\phi A_\theta
}
+ \thetacap \lr{
\frac{1}{r S_\theta} \partial_\phi A_r
-\inv{r} \partial_r (r A_\phi)
}
+ \phicap \lr{
\inv{r} \partial_r (r A_\theta)
– \inv{r} \partial_\theta A_r
}.
}
\end{equation}

This and the divergence result above both check against the back cover of [1].

Laplacian

Using the divergence and curl it’s possible to compute the Laplacian from those, but we saw in cylindrical coordinates that it was much harder to do it that way than to do it directly.

\begin{equation}\label{eqn:sphericalLaplacian:540}
\begin{aligned}
\spacegrad^2 \psi
&=
\lr{
\rcap \partial_{r} +
\frac{\thetacap}{r} \partial_{\theta} +
\frac{\phicap}{r S_\theta} \partial_{\phi}
}
\lr{
\rcap \partial_{r} \psi
+ \frac{\thetacap}{r} \partial_{\theta} \psi
+ \frac{\phicap}{r S_\theta} \partial_{\phi} \psi
} \\
&=
\partial_{rr} \psi
+ \rcap \thetacap \partial_r \lr{ \inv{r} \partial_\theta \psi}
+ \rcap \phicap \inv{S_\theta} \partial_r \lr{ \inv{r} \partial_\phi \psi } \\
&
\quad + \frac{\thetacap}{r} \partial_{\theta} \lr{ \rcap \partial_{r} \psi }
+ \frac{\thetacap}{r^2} \partial_{\theta} \lr{ \thetacap \partial_{\theta} \psi }
+ \frac{\thetacap}{r^2} \partial_{\theta} \lr{ \frac{\phicap}{S_\theta} \partial_{\phi} \psi } \\
&
\quad + \frac{\phicap}{r S_\theta} \partial_{\phi} \lr{ \rcap \partial_{r} \psi }
+ \frac{\phicap}{r^2 S_\theta} \partial_{\phi} \lr{ \thetacap \partial_{\theta} \psi }
+ \frac{\phicap}{r^2 S_\theta^2} \partial_{\phi} \lr{ \phicap \partial_{\phi} \psi } \\
&=
\partial_{rr} \psi
+ \rcap \thetacap \partial_r \lr{ \inv{r} \partial_\theta \psi}
+ \rcap \phicap \inv{S_\theta} \partial_r \lr{ \inv{r} \partial_\phi \psi } \\
&
\quad + \frac{\thetacap\rcap}{r} \partial_{\theta} \lr{ \partial_{r} \psi }
+ \frac{1}{r^2} \partial_{\theta \theta} \psi
+ \frac{\thetacap \phicap}{r^2} \partial_{\theta} \lr{ \frac{1}{S_\theta} \partial_{\phi} \psi } \\
&
\quad + \frac{\phicap \rcap}{r S_\theta} \partial_{\phi r} \psi
+ \frac{\phicap\thetacap}{r^2 S_\theta} \partial_{\phi\theta} \psi
+ \frac{1}{r^2 S_\theta^2} \partial_{\phi \phi} \psi \\
&
\quad + \frac{\thetacap}{r} (\partial_\theta \rcap) \partial_{r} \psi
+ \frac{\thetacap}{r^2} (\partial_\theta \thetacap) \partial_{\theta} \psi
+ \frac{\thetacap}{r^2} (\partial_\theta \phicap) \frac{\phicap}{S_\theta} \partial_{\phi} \psi \\
&
\quad + \frac{\phicap}{r S_\theta} (\partial_\phi \rcap) \partial_{r} \psi
+ \frac{\phicap}{r^2 S_\theta} (\partial_\phi \thetacap) \partial_{\theta} \psi
+ \frac{\phicap}{r^2 S_\theta^2} (\partial_\phi \phicap) \partial_{\phi} \psi \\
&=
\partial_{rr} \psi
+ \rcap \thetacap \partial_r \lr{ \inv{r} \partial_\theta \psi}
+ \rcap \phicap \inv{S_\theta} \partial_r \lr{ \inv{r} \partial_\phi \psi } \\
&
\quad + \frac{\thetacap\rcap}{r} \partial_{\theta} \lr{ \partial_{r} \psi }
+ \frac{1}{r^2} \partial_{\theta \theta} \psi
+ \frac{\thetacap \phicap}{r^2} \partial_{\theta} \lr{ \frac{1}{S_\theta} \partial_{\phi} \psi } \\
&
\quad + \frac{\phicap \rcap}{r S_\theta} \partial_{\phi r} \psi
+ \frac{\phicap\thetacap}{r^2 S_\theta} \partial_{\phi\theta} \psi
+ \frac{1}{r^2 S_\theta^2} \partial_{\phi \phi} \psi \\
&
\quad + \frac{\thetacap}{r} (\thetacap) \partial_{r} \psi
+ \frac{\thetacap}{r^2} (-\rcap) \partial_{\theta} \psi
+ \frac{\thetacap}{r^2} (0) \frac{\phicap}{S_\theta} \partial_{\phi} \psi \\
&
\quad + \frac{\phicap}{r S_\theta} (S_\theta \phicap) \partial_{r} \psi
+ \frac{\phicap}{r^2 S_\theta} (C_\theta \phicap) \partial_{\theta} \psi
+ \frac{\phicap}{r^2 S_\theta^2} (-\rcap S_\theta – \thetacap C_\theta) \partial_{\phi} \psi
\end{aligned}
\end{equation}

All the bivector factors are expected to cancel out, but this should be checked. Those with an \( \rcap \thetacap \) factor are

\begin{equation}\label{eqn:sphericalLaplacian:560}
\partial_r \lr{ \inv{r} \partial_\theta \psi}
– \frac{1}{r} \partial_{\theta r} \psi
+ \frac{1}{r^2} \partial_{\theta} \psi
=
-\inv{r^2} \partial_\theta \psi
+\inv{r} \partial_{r \theta} \psi
– \frac{1}{r} \partial_{\theta r} \psi
+ \frac{1}{r^2} \partial_{\theta} \psi
= 0,
\end{equation}

and those with a \( \thetacap \phicap \) factor are
\begin{equation}\label{eqn:sphericalLaplacian:580}
\frac{1}{r^2} \partial_{\theta} \lr{ \frac{1}{S_\theta} \partial_{\phi} \psi }
– \frac{1}{r^2 S_\theta} \partial_{\phi\theta} \psi
+ \frac{1}{r^2 S_\theta^2} C_\theta \partial_{\phi} \psi
=
– \frac{1}{r^2} \frac{C_\theta}{S_\theta^2} \partial_{\phi} \psi
+ \frac{1}{r^2 S_\theta} \partial_{\theta \phi} \psi
– \frac{1}{r^2 S_\theta} \partial_{\phi\theta} \psi
+ \frac{1}{r^2 S_\theta^2} C_\theta \partial_{\phi} \psi
= 0,
\end{equation}

and those with a \( \phicap \rcap \) factor are
\begin{equation}\label{eqn:sphericalLaplacian:600}
– \inv{S_\theta} \partial_r \lr{ \inv{r} \partial_\phi \psi }
+ \frac{1}{r S_\theta} \partial_{\phi r} \psi
– \frac{1}{r^2 S_\theta^2} S_\theta \partial_{\phi} \psi
=
\inv{S_\theta} \frac{1}{r^2} \partial_\phi \psi
– \inv{r S_\theta} \partial_{r \phi} \psi
+ \frac{1}{r S_\theta} \partial_{\phi r} \psi
– \frac{1}{r^2 S_\theta} \partial_{\phi} \psi
= 0.
\end{equation}

This leaves
\begin{equation}\label{eqn:sphericalLaplacian:620}
\spacegrad^2 \psi
=
\partial_{rr} \psi
+ \frac{2}{r} \partial_{r} \psi
+ \frac{1}{r^2} \partial_{\theta \theta} \psi
+ \frac{1}{r^2 S_\theta} C_\theta \partial_{\theta} \psi
+ \frac{1}{r^2 S_\theta^2} \partial_{\phi \phi} \psi.
\end{equation}

This factors nicely as

\begin{equation}\label{eqn:sphericalLaplacian:640}
\boxed{
\spacegrad^2 \psi
=
\inv{r^2} \PD{r}{} \lr{ r^2 \PD{r}{ \psi} }
+ \frac{1}{r^2 \sin\theta} \PD{\theta}{} \lr{ \sin\theta \PD{\theta}{ \psi } }
+ \frac{1}{r^2 \sin\theta^2} \PDSq{\phi}{ \psi}
,
}
\end{equation}

which checks against the back cover of Jackson. Here it has been demonstrated explicitly that this operator expression is valid for multivector fields \( \psi \) as well as scalar fields \( \psi \).

References

[1] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

[2] A. Macdonald. Vector and Geometric Calculus. CreateSpace Independent Publishing Platform, 2012.