
The cross product in three and more dimensions

Peeter Joot

May 9, 2007

1 Introduction/Abstract

The cross product is an ugly arbitrary seeming sort of beast, but it is a beast
that describes many sorts of physical and mathematical situations. In vector
calculus cross product terms and it relative the determinant end up occurring
all over the place, and in physics the cross product also occurs in many contexts.
Examples are Stokes theorem, Jacobian transformations, normal equations, the
curl operator, Maxwell’s equations, torque, and the list goes on. In many of
these cases the mathematics has no logical tie to three dimensions, yet the cross
product is an explicitly three dimensional sort of beast. The cross product
and the dot product have some similarities in form yet the cross product is only
defined for R3, while the dot product can be defined for Rn including n < 3, and
even extended easily to Cn. The open question remains of how to generalize it
and the math that is related to it to higher dimensions and other mathematical
fields.

2 The cross product in physical situations

On of the common places where the cross product appears naturally is in the
definition of torque. The basic definition of torque as a scalar quantity is the
product of the radial distance times the perpendicular force. The formula in
terms of components in three dimensions given a force vector F = (Fx, Fy, Fz)
and the radial distance r = (x, y, z) is pretty messy, which is the reason it
is typically described by means of a cross product, and a generalized torque
“vector” with a magnitude and direction.

The torque expression can be seen to be a natural result of the examination of
the differential work per unit rotation. 1 A derivation of this torque expression
for an arbitrary rotation in space will be given in the following sections, first
in two dimensions then in three. The expression for angular velocity for a
rotational motion will also be derived. In each of these physical scenarios it
will be seen that the expression for the cross product arises. These physical
preliminaries will lead to a technique for which a possible higher dimensional

1The Feynman lectures, where a one dimension derivation of torque is given in this fashion
for the (x,y) plane.

1

cross product can be formed and also show how a cross product operator can
be defined in a convenient and natural matrix formulation.

2.1 torque in two dimensions

In modern physics where torque is a vector in three dimensions it doesn’t make
sense to talk of a two dimensional torque, but the magnitude of the torque for
a rotation confined to a plane can be defined without reference to the plane’s
normal (ie: the third dimension). This is what is meant by torque in this
section. Application of transformations to and from a rotated frame will be
used to define an expression for torque in R2. This approach can be applied
to do the same in R3, yielding a natural occurrence of the mathematical form
known as the cross product. The cross product is typically first introduced from
its projective definition, but this form doesn’t easily lead to generalizations in
higher dimensions. Using this procedure the cross product will be shown to be
an expression of incremental rotation, and an Rn cross product will be defined
by examination of what we will call an Rn rotation.

If a rotation inducing force F is applied to an object in space with position
r then the only component of the force that will do work is the component
perpendicular to the direction r. Let a new coordinate system with unit vectors
{r̂ = r/‖r‖, θ̂} be defined where θ̂ is the unit vector perpendicular to r in the
direction of positive angular increase. In this coordinate system for the force
F′ = (Fr, Fθ), only the Fθ component does any work.

To transform to the r, θ basis, it can be noted that θ̂ ∝ (−y, x). Thus
r̂ = 1

r (x, y), θ̂ = 1
r (−y, x), and 2 M = 1

r

[
x y
−y x

]
The work done dW is

dW = F · dl

= F′ · rdθ̂

= Fθrdθ

and

F′ = MF

=
1
r

[
x y
−y x

] [
Fx

Fy

]
=

1
r

[
xFx− yFy

−yFx + xFy

]
so

dW = (xFy − yFx)dθ

What is being called the torque τ is this scalar quantity τ = dW
dθ = xFy−yFx,

the work per unit rotation for a force F = (Fx, Fy) applied at a point r = (x, y)
from the origin about which the rotation occurs.

2see appendix for a refresh on change of basis calculations and for the M notation used
here

2

It is also easily noted that the transformation

M =
1
r

[
x y
−y x

]
=
[

x/r y/r
−y/r x/r

]
=
[

cos θ sin θ
− sin θ cos θ

]
= −Rθ = Rθ

T = Rθ
−1

Where Rθ is the transformation matrix for a rotation through an angle θ.
The torque can also be calculated in an alternate fashion by using the ro-

tation matrix. For a rotation through a small angle dθ this transformation
becomes,

Rdθ =
[
cos dθ − sin dθ
sin dθ cos dθ

]
=
[

1 −dθ
dθ 1

]
and so the displaced vector is

r′ = Rdθr =
(
I +

[
0 −dθ
dθ 0

])
r

which gives the differential change in position

dr = r′ − r = (Rdθ − I)r =
[

0 −dθ
dθ 0

]
r =

[
0 −1
1 0

]
rdθ

and the work done is

dW = F · dr

=
[
Fx Fy

] [0 −1
1 0

]
rdθ

=
[
Fy −Fx

] [x
y

]
dθ

= (xFy − yFx)dθ

This same technique can be applied in three and more dimensions, which
will be done in the following sections.

2.2 torque in three dimensions

For three dimensions successive rotations in the xy, yz and zx planes can be
applied

3

Rdθxy
= Rdθz

=

 1 −dθz 0
dθz 1 0
0 0 1


Rdθyz = Rdθx =

1 0 0
0 1 −dθx

0 dθx 1


Rdθzx = Rdθy =

 1 0 dθy

0 1 0
−dθy 0 1



Applying these transformations in sequence is a bit messy, but certainly
easier than applying three successive large rotations in sequence. The mess of
sine and cosine terms for that is horrendous if you care to try!

The calculation for the sequential application of Rdθxy
, Rdθyz

and Rdθzx
is

below.

RdθzxRdθyzRdθxy = RdθyRdθxRdθz

=

 1 0 dθy

0 1 0
−dθy 0 1

1 0 0
0 1 −dθx

0 dθx 1

 1 −dθz 0
dθz 1 0
0 0 1


=

 1 dθx dθy dθy

0 1 −dθx

−dθy 0 1

 1 −dθz 0
dθz 1 0
0 0 1


=

1 + dθx dθy dθz −dθz + dθx dθy dθy

dθz 1 −dθx

−dθy + dθx dθz dθy dθzdθx 1


= I +

 0 −dθz dθy

dθz 0 −dθx

−dθy dθx 0

+

 0 dθx dθy 0
0 0 0

dθx dθz dθy dθz 0


+

dθx dθy dθz 0 0
0 0 0
0 0 0



Note that if the second and third order terms are neglected then

RdθzxRdθyzRdθxy − I = RdθyRdθxRdθz − I ≈

 0 −dθz dθy

dθz 0 −dθx

−dθy dθx 0


and that

4

 0 −dθz dθy

dθz 0 −dθx

−dθy dθx 0

 =

 0 0 dθy

0 0 0
−dθy 0 0

+

0 0 0
0 0 −dθx

0 dθx 0

+

 0 −dθz 0
dθz 0 0
0 0 0


The following result

RdθzxRdθyzRdθxy = RdθyRdθxRdθz

≈ I + (Rdθy − I) + (Rdθx − I) + (Rdθz − I) = Rdθxyz

is independent of the order of application of the rotations, which isn’t true for
the case when the rotations are not infinitesimal.

Using this a differential change in r due to the rotation is

dr = r′ − r = (Rdθxyx − I)r =

 0 −dθz dθy

dθz 0 −dθx

−dθy dθx 0

 r

= −

 0 −z y
z 0 −x
−y x 0

dθx

dθy

dθz


This vector of dθi components can be written

dθ =

dθx

dθy

dθz


In the same fashion as in the two dimensional case above, this can be applied

to calculate the work done,

dW = F · dr

=
[
Fx Fy Fz

](
−

 0 −z y
z 0 −x
−y x 0

 dθ

)

= −

( 0 −z y
z 0 −x
−y x 0

T Fx

Fy

Fz

)T

dθ

=

( 0 −z y
z 0 −x
−y x 0

F

)
· dθ

5

So in the three dimensional case we can write

dW = F · dr = τ · dθ

Where in analogy with the two dimensional case dW = F · dr = τdθ we can
define the torque as this quantity τ ,

τ =

 0 −z y
z 0 −x
−y x 0

F =

yFz − zFy

zFx − xFz

xFy − yFx

 = r× F

the work per unit “angle” of rotation in space.

2.3 angular velocity in three dimensions

One of the formulas that I recall was always just presented and never derived
(for the three dimensional case) was that for dr

dt in terms of a vector angular
velocity. This is another equation that the cross product comes up, and an
equation whose derivation is easily done given some of the work above.

Let ω = d
dt

(
θx, θy, θz

)
then in the limit

dr
dt

=
r(t + dt)− r(t)

dt

=
Rdθxyxr− r

dt

=
(Rdθxyx − I)r

dt

=
1
dt

 0 −dθz dθy

dθz 0 −dθx

−dθy dθx 0

 r

=

ωyz − ωzy
ωzx− ωxz
ωxy − ωyx


Thus

v = ω × r

Note that these were not derivations of the cross product, but just physical
situations in which the cross product occurs.

3 generalizing the cross product

3.1 defining a cross product operator

In each of the physical situations where the cross product occurs above (ie:
torque and angular velocity) the derivation of these formulas was closely tied to

6

the differential change in position dr after application of a rotation transforma-
tion Rdθxyz ,

dr = (Rdθxyz
− I)r =

 0 −dθz dθy

dθz 0 −dθx

−dθy dθx 0

 r =

 0 −z y
z 0 −x
−y x 0

 dθ

As a side effect of the derivations above the cross product shows up tied
to a matrix form since the rotation transformation was defined in matrix form.
Expressing the cross product in this matrix form has a certain aesthetic pleas-
antness that the component form lacks. It can also be seen that as an operational
quantity the matrices above, whether they contain the dθi or the ri terms, are
the important part of the equation, and we can drop the vector multiplication
part of the expression.

A cross product operator u× can be defined for and vector u in R3,

u× =

 0 −uz uy

uz 0 −ux

−uy ux 0


When applied to a vector v

(u×)v =

 0 −uz uy

uz 0 −ux

−uy ux 0

vx

vy

vz

 = u× v

which is what we typically define as ×uv. Using this new notation the
change in position can be written,

dr = (dθ×)r = −(r×)dθ

By defining the cross product in this fashion, the rotational and physical
origins have been discarded, but it is interesting to note the way that the cross
product and a rotation in space are related in a fundamental way.

3.2 decomposition of the cross product operator

The cross product operator as defined above can be antisymetrically decomposed
into its positive and negative portions as follows

u× =

 0 −uz uy

uz 0 −ux

−uy ux 0

 =

 0 0 uy

uz 0 0
0 ux 0

−
 0 0 uy

uz 0 0
0 ux 0

T

Each half of the right hand side can be diagonalized, but not via a change

7

of basis 3 , as follows:

u× =

0 1 0
0 0 1
1 0 0

ux 0 0
0 uy 0
0 0 uz

0 1 0
0 0 1
1 0 0


−

0 0 1
1 0 0
0 1 0

ux 0 0
0 uy 0
0 0 uz

0 0 1
1 0 0
0 1 0


The matrix P =

[
0 1 0
0 0 1
1 0 0

]
above is an interesting one, as P−1 = PT = P2.

If one defines D(u) as the matrix with the terms of u are along the diagonal,
then there is now a nice and concise way of writing the cross product operator.

u× = PD(u)P−PT D(u)PT

This is also possibly suggestive of how to define the cross product in greater
than three dimensions, for it could possibly be of the same form where P is a
permutation or some other transformation.

3.3 cross product via four dimensional rotation

As was noted above the cross product is closely related to a rotation in space.
This leads to a possible means for generalizing the cross product to higher
dimensions by examining the four dimensional rotation operator.

Some clarification here is probably in order. What is meant by a four di-
mensional rotation? When the three dimensional rotation operator was defined,
it was the product in the limit of applying a possible rotation dθxy around the
z axis, a possible rotation dθyz around the x axis, and a possible rotation dθzx

around the y axis. It is important to note that the magnitude of these rotations
is small, because otherwise the result is different according to which order each
of the rotations is applied. 4 A four dimension differential rotation operator
can be defined in the same fashion as the limit of the products of the rotations
in each plane. This is slightly more complicated in four dimensions than in
three since a rotation can be simultaneously perpendicular to two different axis,
rather than one. For example, a rotation in the xy plane is perpendicular to
both the z axis and the w axis, if the space is defined as having w, x, y, and z
components.

Each of the possible differential rotations will be enumerated below. Let
u = (dθw, dθx, dθy, dθz) where each of the dθi terms is a rotation perpendicular
to the i axis.

3I was playing around with this at one point and I believe it was possible to diagonalized
the matrix, but not in a simple fashion, as it required complex eigenvalues and eigenvectors,
and the solution of a cubic equation.

4I am not even sure that this composite rotation is a single rotation in the traditional sense
of a rotation along a plane in space.

8

Differential rotations in the 1, 2, 3 subspace, in the 1, 2 plane perpendicular
to 3, in the 2, 3 plane perpendicular to 1, in the 3, 1 plane perpendicular to 2,
respectively.

1 −u3 0 0
u3 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 −u1 0
0 u1 1 0
0 0 0 1

 ,


1 0 u2 0
0 1 0 0

−u2 0 1 0
0 0 0 1


Differential rotations in the 1, 2, 4 subspace, in the 1, 2 plane perpendicular

to 4, in the 2, 4 plane perpendicular to 1, in the 4, 1 plane perpendicular to 2,
respectively.

1 −u4 0 0
u4 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 −u1

0 0 1 0
0 u1 0 1

 ,


1 0 0 u2

0 1 0 0
0 0 1 0

−u2 0 0 1


Differential rotations in the 1, 3, 4 subspace, in the 1, 3 plane perpendicular

to 4, in the 3, 4 plane perpendicular to 1, in the 4, 1 plane perpendicular to 3,
respectively.

1 0 −u4 0
0 1 0 0
u4 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 1 −u1

0 0 u1 1

 ,


1 0 0 u3

0 1 0 0
0 0 1 0

−u3 0 0 1


Differential rotations in the 2, 3, 4 subspace in the 2, 3 plane perpendicular

to 4, in the 3, 4 plane perpendicular to 2, in the 4, 2 plane perpendicular to 3,
respectively.

1 0 0 0
0 1 −u4 0
0 u4 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 1 −u2

0 0 u2 1

 ,


1 0 0 0
0 1 0 u3

0 0 1 0
0 −u3 0 1


In the limit, where any dθidθj or higher order terms are neglected, the prod-

uct of all of these matrices Ri is

R =
∏

i

Ri ≈ I +
∑

i

(Ri − I) =
1 −u3 − u4 u2 − u4 u2 + u3

u3 + u4 1 −u1 − u4 −u1 + u3

u4 − u2 u1 + u4 1 −u1 − u2

−u2 − u3 u1 − u3 u1 + u2 1


From this in the same fashion as was done for three dimensions a cross

product operator can be defined for u as u× = R − I to give a cross product
definition for R4

9

u× =


0 −u3 − u4 u2 − u4 u2 + u3

u3 + u4 0 −u1 − u4 u3 − u1

−u2 + u4 u1 + u4 0 −u1 − u2

−u2 − u3 u1 − u3 u1 + u2 0


It has yet to be shown that this “cross product” has characteristics similar

to the three dimension cross product. It can be verified that it satisfies at least
the following orthogonality conditions as does the standard R3 cross product.

u× v · u = 0
u× v · v = 0

u× u = 0

u× v = −v × u

u× (av + bw) = au× v + bu×w

(au + bv)×w = au×w + bv ×w

u× v ·w = −u×w · v

Not all of these conditions are independent, u × v is implied by u × u =
−u× u, and u× v · u = 0 is implied since,

u× v · u = −u× u · v
= −(u× u) · v
= 0

The key properties are probably the bilinearity, and the negation on exchange,
but I haven’t yet spent the time proving that all the rest follow.

3.4 orthogonality and vector products

I had arrived at the above result for a R4 cross product in a few different ways,
where this was one of the later methods. The first ways that I arrived at this
result was by looking at orthogonality conditions and trying to extend the three
dimensional cross product in component form. Using just the orthogonality
conditions is not enough to uniquely define a “cross product” even in R3.

It is interesting to note that the dot product can be seen to be a statement
of the orthogonality conditions of Pythagoras law

‖u + v‖2 = ‖u‖2 + ‖v‖2

10

In terms of components this is

‖u + v‖2 =
∑

i

(ui + vi)(ui + vi)

=
∑

i

ui
2 + 2uivi + vi

2

=
∑

i

ui
2 + 2

∑
i

uivi +
∑

vi
2

= ‖u‖2 + 2
∑

i

uivi + ‖v‖2

So, if the Pythagorean condition is to hold the term, the dot product,∑
i

uivi

must be zero.
The same thing can be done for the complex inner product, where for or-

thogonality the term, ∑
i

uivi + viui

must be zero.
If
∑

i uivi = 0, this implies
∑

i uivi =
∑

i viui = 0, so the definitions of both
the complex and the real inner products arise naturally from an examination of
orthogonality constraints.

The cross product is also closely related to orthogonality constraints and
the R3 cross product can be derived by looking specifically at these constraints.
This can be seen by calculating the null space of a matrix with rows formed of
the elements of two vectors u and v[

u1 u2 u3

v1 v2 v3

]
Any vector that is in the null space is not a linear combination of the two

vectors and then must be perpendicular to it. 5 Row reducing this matrix gives[
u1(u2v1 − u1v2) 0 u1(u2v3 − u3v2)

0 u2(u2v1 − u1v2) u2(u3v1 − u1v3)

]
Provided that u1 6= 0, u2 6= 0, and u2v1 − u1v2 6= 0, then the fully reduced

form of this matrix is[
1 0 (u2v3 − u3v2)/(u2v1 − u1v2)
0 1 (u3v1 − u1v3)/(u2v1 − u1v2)

]
5a proof of this should be inserted. Note the implicit dependence on the real inner product

here.

11

So the null space is composed of the set of scalar multiples of the vector(u2v3 − u3v2)/(u2v1 − u1v2)
(u3v1 − u1v3)/(u2v1 − u1v2)

−1


of which, provided the R3 cross product u× v is one ofu2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1


This shows that orthogonality is not enough to uniquely define the cross

product.
Doing the same null space calculations in Rn for the two vectors u and v

gives the null space as the set of vectors n, where ti are all arbitrary constants
and n is defined as follows

n = t1



u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

0
0
...
0


+ t2



u2v4 − u4v2

u4v1 − u1v4

0
u1v2 − u2v1

0
...
0


. . . + tn−2



u2vn − unv2

unv1 − u1vn

0
...
0
0

u1v2 − u2v1


This is the set of vectors that are orthogonal to both u and v, but at a

glance no particular vector from that set is appealing as a choice for a vector
product.

Suppose, for R4, setting t1 = 1 and t2 = 1, then a vector from the null space
is 

u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

0

+


u2v4 − u4v2

u4v1 − u1v4

0
u1v2 − u2v1


If this is compared to what was called the R4 cross product above, it can be

seen that the cross product has these two terms, plus two more.
u3v4 − u4v3

0
u4v1 − u1v4

u1v3 − u3v1

+


0

u3v4 − u4v3

u4v2 − u2v4

u2v3 − u3v2


It should be possible to form these last two terms via a linear combination

of the first two, but this has not been tried.

12

3.5 more on the cross product in four dimensions

Going back to the original decomposition of the three dimensional cross product,
a possible higher dimensional cross product can be defined in the same fashion
u×4 = P4D(u)P4 −P4

T D(u)P4
T

or perhaps as some more general quantity u×4 = G(u)−G(u)T

but how are the P4 or G matrices selected, so that the result has properties
comparable to the R3 cross product.

It can be noted above that the P matrix above is a permutation matrix.
This is the identity matrix with its rows shifted up by one, or it columns shifted
over right by one.

In four dimensions there are three permutation matrices that be can created
by similarly shifting the rows or columns of the identity matrix. These are

P =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0



P2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



P3 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


They matrices are unitary, so for each the inverse is the transpose

P−1 = PT = P3

P2−1
= P2T

= P2

P3−1
= P3T

= P

With the hopes of discovering a suitable cross product operator with the
form of the R3 cross product operator, calculation for PiD(u)Pi follows.

PD(u)P =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0




u1 0 0 0
0 u2 0 0
0 0 u3 0
0 0 0 u4




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0



=


0 u2 0 0
0 0 u3 0
0 0 0 u4

u1 0 0 0




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 =


0 0 u2 0
0 0 0 u3

u4 0 0 0
0 u1 0 0



13

P2D(u)P2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




u1 0 0 0
0 u2 0 0
0 0 u3 0
0 0 0 u4




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



=


0 0 u3 0
0 0 0 u4

u1 0 0 0
0 u2 0 0




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 =


u3 0 0 0
0 u4 0 0
0 0 u1 0
0 0 0 u2



P3D(u)P3 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0




u1 0 0 0
0 u2 0 0
0 0 u3 0
0 0 0 u4




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0



=


0 0 0 u4

u1 0 0 0
0 u2 0 0
0 0 u3 0




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 =


0 0 u4 0
0 0 0 u1

u2 0 0 0
0 u3 0 0


The potential cross product operators can be defined as

u× = PiD(u)Pi − (Pi)T D(u)(Pi)T

For P the following cross product operator is generated

u× = PD(u)P−PT D(u)PT

=


0 0 u2 − u4 0
0 0 0 u3 − u1

u4 − u2 0 0 0
0 u1 − u3 0 0


For P2 a trivial cross product operator is generated

u× = P2D(u)P2 − (P2)T D(u)(P2)T = 0

And the cross product generated by P3 is just the transpose of that for P

u× = P3D(u)P3 − (P3)T D(u)(P3)T

=


0 0 u4 − u2 0
0 0 0 u1 − u3

u2 − u4 0 0 0
0 u3 − u1 0 0



14

Obviously the second of these doesn’t generate a useful cross product. Since
the other two are transposes of each other, either of those can be chosen for
investigation. Examining the first of these relations shows that

u× v = (PD(u)P−PT D(u)PT)v =
0 0 u2 − u4 0
0 0 0 u3 − u1

u4 − u2 0 0 0
0 u1 − u3 0 0




v1

v2

v3

v4

 =


(u2 − u4)v3

(u3 − u1)v4

(u4 − u2)v1

(u1 − u3)v2


One of the properties that the cross product in three dimensions had was

u×v ·v = 0 and u×v ·u = 0. Does this potential cross product have the same
properties?

u× v · v =

v3v1(u2 − u4)
+ v4v2(u3 − u1)
+ v1v3(u4 − u2)
+ v2v4(u1 − u3)

=
v1v3(u2 − u4 + u4 − u2)

+ v2v4(u3 − u1 + u1 − u3)
= 0

u× v · u =

(u2 − u4)v3u1

+ (u3 − u1)v4u2

+ (u4 − u2)v1u3

+ (u1 − u3)v2u4

=

u1u2(v3 − v4)
+ u1u4(v2 − v3)
+ u2u3(v4 − v1)
+ u3u4(v1 − v2)

6= 0

Although u×v ·v = 0, and u×v ·w = −u×w ·v as the R3 cross product,
this product seems incomplete. There are no v1v2, v1v4, or v2v3 terms. In
u×v ·u there are no u1u3 or u2u4 terms and the result is not zero as would be
expected in a cross product. 6

Some of the terms that are missing can be added to generate a cross product
which satisfy the same orthogonality conditions that are true for R3. For ex-
ample a u1v3x̂1 term and a u3v1x̂1 term could be added. Similarly a −u3v2x̂1

term and a u2v3x̂1 term can be added. The result for u × v · u = u had a
u1u4v2 term that resulted from the u1v2x̂4 term of u× v. If a −u4v2x̂1 term is
added then it would have canceled out. If terms are added until each term has
a “match” and each term of u×v ·u cancels out leaving zero then the following
revised cross product is generated.

6The fact that u×v ·u 6= 0 can also be viewed as a consequence of u×u 6= 0 for this cross
product, given that u× v · u = −u× u · v 6= 0.

15

(u2v3 − u3v2)x̂1

+ (u3v4 − u4v3)x̂2

+ (u4v1 − u1v4)x̂3

+ (u1v2 − u2v1)x̂4

+ (u3v4 − u4v3)x̂1

+ (u4v1 − u1v4)x̂2

+ (u1v2 − u2v1)x̂3

+ (u2v3 − u3v2)x̂4

+ (u2v4 − u4v2)x̂1

+ (u3v1 − u1v3)x̂2

+ (u4v2 − u2v4)x̂3

+ (u1v3 − u3v1)x̂4

Note that this can also written as

(u2v3 − u3v2)x̂1

+ (u3v1 − u1v3)x̂2

+ (u1v2 − u2v1)x̂3

+ (u3v4 − u4v3)x̂2

+ (u4v2 − u2v4)x̂3

+ (u2v3 − u3v2)x̂4

+ (u2v4 − u4v2)x̂1

+ (u4v1 − u1v4)x̂2

+ (u1v2 − u2v1)x̂4

+ (u3v4 − u4v3)x̂1

+ (u4v1 − u1v4)x̂3

+ (u1v3 − u3v1)x̂4

where the terms are grouped into 4 sets of the three dimensional cross products
on the (1, 2, 3), (2, 3, 4), (1, 2, 4), and (1, 3, 4) subspaces.

If this is put back into the matrix form u× as
0 −u3 − u4 u2 − u4 u2 + u3

u3 + u4 0 −u1 − u4 u3 − u1

u4 − u2 u1 + u4 0 −u1 − u2

−u2 − u3 u1 − u3 u1 + u2 0




v1

v2

v3

v4


Then the left hand side is the same as obtained via the R4 rotation method.

3.6 components of the R4 cross product operator

The R4 cross product operator that has been defined above was arrived at by
two different methods. One was via an R4 rotation, and the second was by

16

starting with the decomposed form of u×3 = PDP − (PDP)T and adding
terms until it was “complete” with respect to various orthogonality conditions
that hold in R3. A additional method of arriving at the same operator can be
seen by decomposing this operator.

To do so, u× can be written G(u)−G(u)T where

G(u) =


0 0 u2 u2 + u3

u3 + u4 0 0 u3

u4 u1 + u4 0 0
0 u1 u1 + u2 0



=


0 0 u2 0
0 0 0 u3

u4 0 0 0
0 u1 0 0



+


0 0 0 u3

u4 0 0 0
0 u1 0 0
0 0 u2 0



+


0 0 0 u2

u3 0 0 0
0 u4 0 0
0 0 u1 0


If this is decomposed into four sets of three dimension cross product opera-

tors on each of the subspaces where one component is removed then

G(u) =


0 0 u2 0
u3 0 0 0
0 u1 0 0
0 0 0 0



+


0 0 0 0
0 0 0 u3

0 u4 0 0
0 u2 0



+


0 0 0 u2

u4 0 0 0
0 0 0 0
0 u1 0 0



+


0 0 0 u3

0 0 0 0
u4 0 0 0
0 0 u1 0


Thus the R4 cross product operator can be generated by adding all of the

R3 cross product operators for each subspace where one component is removed
or zeroed out.

17

Each of the terms of the sum for G(u) above can be decomposed using the
P, P2, and P3 permutation matrices

0 0 u2 0
0 0 0 u3

u4 0 0 0
0 u1 0 0

 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0




u1 0 0 0
0 u2 0 0
0 0 u3 0
0 0 0 u4




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


= PD(u)P


0 0 0 u3

u4 0 0 0
0 u1 0 0
0 0 u2 0

 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




u1 0 0 0
0 u2 0 0
0 0 u3 0
0 0 0 u4




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


= P2D(u)P


0 0 0 u2

u3 0 0 0
0 u4 0 0
0 0 u1 0

 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0




u1 0 0 0
0 u2 0 0
0 0 u3 0
0 0 0 u4




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


= PD(u)P2

And can write in summary, that the four dimensional cross product operator
is

G(u) = PD(u)P + PD(u)P2 + P2D(u)P

Defining,
F (u) = PD(u)P,

the three and four dimensional cross products operator matrices can be written,

u×3 = F (u)− F (u)T

whereP =

0 1 0
0 0 1
1 0 0



u×4 = F (u)− F (u)T

+ PF (u)− F (u)T PT + F (u)P−PT F (u)T

whereP =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0



18

3.7 possible cross products in five dimensions

Possible cross products were constructed earlier for which the u × v · v = 0
and for which u × v · u could possibly be zero under certain conditions, but
wasn’t true generally. It was shown that the sum of the cross products of the
4 possible R3 subspaces of R4 was a more suitable choice for a cross product
than the other construction as it generates a result that is orthogonal to both
of it’s component vectors. That result could have been obtained more directly,
but the process used to arrive at it indirectly was useful or at least interesting.

Let us form the sum of the R4 cross products of the five possible R4 sub-
spaces of R5 and see what the result is. It will be simpler to use just the positive
parts of the R4 cross product operator, then to expand this all out explicitly.

For the (1, 2, 3, 4) subspace
0 0 u2 u2 + u3 0

u3 + u4 0 0 u3 0
u4 u1 + u4 0 0 0
0 u1 u1 + u2 0 0
0 0 0 0 0


For the (1, 2, 3, 5) subspace

0 0 u2 0 u2 + u3

u3 + u5 0 0 0 u3

u5 u1 + u5 0 0 0
0 0 0 0 0
0 u1 u1 + u2 0 0


For the (1, 2, 4, 5) subspace

0 0 0 u2 u2 + u4

u4 + u5 0 0 0 u4

0 0 0 0 0
u5 u1 + u5 0 0 0
0 u1 0 u1 + u2 0


For the (1, 3, 4, 5) subspace

0 0 0 u3 u3 + u4

0 0 0 0 0
u4 + u5 0 0 0 u4

u5 0 u1 + u5 0 0
0 0 u1 u1 + u3 0


For the (2, 3, 4, 5) subspace

0 0 0 0 0
0 0 0 u3 u3 + u4

0 u4 + u5 0 0 u4

0 u5 u2 + u5 0 0
0 0 u2 u2 + u3 0


19

Which sums to the following

2


0 0 u2 u2 + u3 u2 + u3 + u4

u3 + u4 + u5 0 0 u3 u3 + u4

u4 + u5 u1 + u4 + u5 0 0 u4

u5 u1 + u5 u1 + u2 + u5 0 0
0 u1 u1 + u2 u1 + u2 + u3 0



=2


0 0 0 0 u2

u3 0 0 0 0
0 u4 0 0 0
0 0 u5 0 0
0 0 0 u1 0

+ 2


0 0 0 0 u3

u4 0 0 0 0
0 u5 0 0 0
0 0 u1 0 0
0 0 0 u2 0



+2


0 0 0 0 u4

u5 0 0 0 0
0 u1 0 0 0
0 0 u2 0 0
0 0 0 u3 0

+ 2


0 0 0 u2 0
0 0 0 0 u3

u4 0 0 0 0
0 u5 0 0 0
0 0 u1 0 0



+2


0 0 0 u3 0
0 0 0 0 u4

u5 0 0 0 0
0 u1 0 0 0
0 0 u2 0 0

+ 2


0 0 u2 0 0
0 0 0 u3 0
0 0 0 0 u4

u5 0 0 0 0
0 u1 0 0 0


If P is defined as 

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0


then the R5 cross product operator can be written as

u×5 = G(u)−G(u)T

where

G(u) = 2(PD(u)P + PD(u)P2 + P2D(u)P2 + P2D(u)P

+ PD(u)P3 + P3D(u)P)

Reiterating the results for each of R3, R4, and R5, where D = D(u)

u×3 = PDP− (PDP)T

P =

0 1 0
0 0 1
1 0 0


u×4 = PDP + PDP2 + P2DP− (PDP + PDP2 + P2DP)T

20

P =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


u×5 = 2(PDP + PDP2 + P2DP2 + P2DP + PDP3 + P3DP)−

2(PDP + PDP2 + P2DP2 + P2DP + PDP3 + P3DP)T

P =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0


There is a definite pattern here. Looking at the positive parts, this pattern

can extrapolated to higher dimensions

R3 :P1DP1

R4 :P1DP1 + P1DP2

+P2DP1

R5 :P1DP1 + P1DP2 + P1DP3

+P2DP1 + P2DP2

+P3DP1

R6 :P1DP1 + P1DP2 + P1DP3 + P1DP4

+P2DP1 + P2DP2 + P2DP3

+P3DP1 + P3DP2

+P4DP1

R7 : . . .

In the above all of the sets of PiDPj have been included such that i + j < n,
the dimension of the vector space. The number of these matrices is

∑n−2
i=1 i =

1
2 (n − 2)(n − 1). Because of the way these operators have been constructed,
for u× in R4 there are (4)(3) = 12 positive terms (in R3 there are 3 positive
terms), in R5 there are (5)(12) positive terms, and in Rn it can be expected
that there will be (n)(n− 1)...(3) = n!/2 positive terms.

Each of the matrices PiDPj contributes n positive terms to the cross prod-
uct, and so the following multiplicative factor can be added to the terms above
to have a definition consistent with the R5 cross product operator derived above.

1
n

n!
2

1
2 (n− 2)(n− 1)

= (n− 3)!

21

Using this pattern, the general cross product operator matrix for Rn can be
written as

u×n = (n− 3)!
n−2∑
i=1

n−1−i∑
j=1

(PiDPj − (PiDPj)T)

where P =


0 1 0 . . . 0
0 0 1 0 0

0 0 0
. . . 0

0 0 0 0 1
1 0 0 . . . 0



and D =


u1 0 . . . 0 0
0 u2 0 0 0

0 0
. . . 0 0

0 0 0 un−1 0
0 0 . . . 0 un


Note that for higher than R5 it has not yet been verified that u× v · u = 0

or that u× v · v = 0 or that u× u = 0 . These have been verified explicitly for
R4 and R5, but the calculations are too tedious to show.

One additional property that holds for the three dimensional cross product
that also holds for the Rn version is u×v ·w = −u×w ·v. If u×u = 0 is true
for the Rn cross product defined above, then this implies that u×v ·u = 0 too.
This first property can be shown by writing u× = G−GT = [gij], so that

(u× v)i =
n∑

s=1

gisvs

thus for the triple-product

u× v ·w =
n∑

t=1

(
n∑

s=1

gtsvs)wt

=
n∑

s=1

(
n∑

t=1

gtswt)vs

= ([gij]
T w) · v

= (G−GT)T w · v
= −(G−GT)w · v
= −u×w · v

I suspect that u×u = 0 and that u×v ·v = 0 also hold for n > 5 in the Rn

cross product as defined above. Some sort of recursive proof for this is probably
required to show this.

22

3.8 on the magnitude of the cross product operator

The orthogonality properties of the cross product operator are not the only ones
of interest, since the cross product in R3 has a specific magnitude as well as
direction.

The projective form u× v = ‖u‖‖v‖ sin(u,v)n̂ may give some indication of
what to expect for Rn, where (u,v) is the angle between the two vectors u and
v, and n̂ is a unit vector in the direction of u × v. However, how would the
angle be defined for Rn.

For this we can go to the projective form of the dot product u · v =
‖u‖‖v‖ cos(u,v).

Note that this form of the dot product comes directly from the triangle law
of trigonometry.

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos(u,v)
= 〈u− v,u− v〉
= 〈u,u〉+ 〈v,v〉 − 〈u,v〉 − 〈v,u〉
= ‖u‖2 + ‖v‖2 − 〈u,v〉 − 〈v,u〉

The result follows, since for the real case, 〈u,v〉+ 〈v,u〉 = 2u · v.
If cos(u,v) = u·v

‖u‖‖v‖ is taken to implicitly define the angle between two
vectors in Rn, then the magnitude of the Rn cross product could be defined in
the following fashion as is true for R3

‖u× v‖2 = ‖u‖2‖v‖2
(
1−

(u · v
‖u‖‖v‖

)2)
= ‖u‖2‖v‖2 − (u · v)2

Note that using the norm squared as a measure of magnitude looses the
sign of the magnitude. There may be a better way of defining sin(u,v) =√

1− u·v
‖u‖‖v‖ because this has an implied sign ambiguity. Then again the n̂

term has also been ignored, so perhaps the positive root is an acceptable angular
measure.

I still need to check if this is true for the Rn cross product operator as
defined above for n > 3. In order to calculate ‖u×n v‖2 the following sum has
to be evaluated

((n− 3)!)2
(n−2∑

i=1

n−1−i∑
j=1

(PiDPjv − (PiDPj)T v)
)
·

(n−2∑
i′=1

n−1−i′∑
j′=1

(Pi′DPj′
v − (Pi′DPj′

)T v)
)

23

The dot product can be brought into the sum

((n− 3)!)2
n−2∑
i=1

n−1−i∑
j=1

n−2∑
i′=1

n−1−i′∑
j′=1

(
(PiDPjv − (PiDPj)T v)

· (Pi′DPj′
v − (Pi′DPj′

)T v)
)

and this can be expanded

((n− 3)!)2
n−2∑
i=1

n−1−i∑
j=1

n−2∑
i′=1

n−1−i′∑
j′=1

PiDPjv ·Pi′DPj′
v −PiDPjv · (Pi′DPj′

)T v

+ (PiDPj)T v · (Pi′DPj′
)T v − (PiDPj)T v ·Pi′DPj′

v

There are a couple further manipulations that can be done, since a·b = aT v,
PT = P−1, and P−i = Pn−i.

((n− 3)!)2
n−2∑
i=1

n−1−i∑
j=1

n−2∑
i′=1

n−1−i′∑
j′=1

vT P−jDPi′−iDPj′
v − vT P−jDP−i−j′

DP−i′v

+ vT PiDPj−j′
DP−i′v − vT PiDPj+i′DPj′

v

Well, after all this, I am not actually any closer to getting ‖u×v‖2 evaluated.
Perhaps there is an easier way. This matrix formulation for u× is a nice way for
expression but it has turned out to be a bit awkward for manipulation, at least
without a way to expand PiDPj , which I haven’t tried for the general case.

4 Appendix 1

4.1 Change of basis, transformations, and rotations

Given an orthogonal basis (ûi)i in one coordinate system and an orthogonal
basis (û′

i)i for the same coordinate system, how are the two related?
The two sets of unit vectors can be related by a set of linear equations

û′
i =

n∑
s=1

aisûs

ûi =
n∑

s=1

bisû′
s

24

What the values of aij or bij are can be determined by taking inner products
and by using the orthogonality constraints.

〈û′
i, ûj〉 =

n∑
s=1

ais〈ûs, ûj〉

=
n∑

s=1

aisδsj

= aij

〈ûi, û′
j〉 =

n∑
s=1

bis〈û′
s, û

′
j〉

=
n∑

s=1

bisδsj

= bij

= aji

So the relationships between the two sets of basis vectors û′
i and ûi are

û′
i =

n∑
s=1

aisûs =
n∑

s=1

〈û′
i, ûs〉ûs

ûi =
n∑

s=1

asiû′
s =

n∑
s=1

〈ûi, û′
s〉û′

s

Note that these two relationships can be expressed with a transformation
matrix M and it’s Hermitian transpose M∗

û′
1

û′
2
...

û′
n

 =


a11 a12 . . . a1n

a21 a22

...
. . .

an1 . . . ann



û1

û2

...
ûn

 = M


û1

û2

...
ûn



û1

û2

...
ûn

 =


a11 a21 . . . an1

a12 a22

...
. . .

a1n . . . ann



û′

1

û′
2
...

û′
n

 = M∗


û′

1

û′
2
...

û′
n


or 

û′
1

û′
2
...

û′
n

 =


〈û′

1, û1〉 〈û′
1, û2〉 . . . 〈û′

1, ûn〉
〈û′

2, û1〉 〈û′
2, û2〉

...
. . .

〈û′
n, û1〉 . . . 〈û′

n, ûn〉



û1

û2

...
ûn


25

Given an arbitrary vector r = [rj]j in the primary coordinate system, one
can express this vector r′ = [r′j]j in the secondary coordinate system using the
same sort procedure used to derive the transformation matrix M.

r′ =
n∑

s=1

rsûs

=
n∑

s=1

rs

n∑
t=1

atsû′
t

=
n∑

t=1

û′
t

n∑
s=1

atsrs

=
n∑

t=1

û′
tr

′
t

Since r′i =
∑n

s=1 aisrs one can see that the components of the vectors trans-
form in a similar fashion the basis vectors, and this can be written r = MT r′

and r′ = Mr.
When deriving this this result seemed odd at first, and found myself won-

dering if have I messed up despite the fact everything looked okay? On paper I
had only derived this case for Rn and not Cn.7

It doesn’t matter too much, because I don’t need the result for the general
case in the torque examination anyhow.

7A worked example showed that transformation of the coordinate vectors and the basis
vectors do differ by a complex conjugate factor.

Setting û′1 = 1√
2
(1, i), û′2 = 1√

2
(1,−i), ûi = êi the unit vectors in R2, then M = 1√

2

h
1 i
1 −i

i
.

Picking an arbitrary test vector r = (1, 1) = û1+û2 = 1√
2
((1−i)û′1+(1+i)û′2) the application

of the transformation formulas shows r = MT r′ = 1√
2

h
1 1
i −i

i
1√
2

h
1−i
1+i

i
=

h
1
1

i
as expected.

26

