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The complex number derivative, when it exists, is defined as:

δ f
δz

=
f (z + δz)− f (z)

δz

f ′(z) = limit|δz|→0
δ f
δz

Like any two variable function, this limit requires that all limiting paths
produce the same result, thus it is minimally necessary that the limits for the
particular cases of δz = δx + iδy exist for both δx = 0, and δy = 0 indepen-
dently. Of course there are other possible ways for δz → 0, such as spiraling
inwards paths. Apparently it can be shown that if the specific cases are satis-
fied, then this limit exists for any path (I’m not sure how to show that, nor will
try, at least now).

Examining each of these cases separately, we have for δx = 0, and f (z) =
u(x, y) + iv(x, y):

δ f
δz

=
u(x, y + δy) + iv(x, y + δy)

iδy

→ −i
∂u(x, y)

∂y
+

∂v(x, y)
∂y

and for δy = 0

δ f
δz

=
u(x + δx, y) + iv(x + δx, y)

δx

→ ∂u(x, y)
∂x

+ i
∂v(x, y)

∂x
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If these are equal regardless of the path, then equating real and imaginary
parts of these respective equations we have:

∂v
∂x

+
∂u
∂y

= 0 (1)

∂u
∂x

− ∂v
∂y

= 0 (2)

Now, these are strikingly similar to the gradient, and we make this sim-
ilarily explicit using the planar pseudoscalar i = e1 ∧ e2 = e1e2 as the unit
imaginary. For the first equation, pre multiplying by 1 = e11, and post multi-
plying by e2 we have:

e1
∂e12v

∂x
+ e2

∂u
∂y

= 0,

and for the second, pre multiply by e1, and post multiply the ∂y term by
1 = e22, and rearrange:

e1
∂u
∂x

+ e2
∂e12v

∂y
= 0.

Adding these we have:

e1
∂u + e12

∂x
+ e2

∂u + e12v
∂y

= 0.

Since f = u + iv, this is just

e1
∂ f
∂x

+ e2
∂ f
∂y

= 0. (3)

Or,
∇ f = 0 (4)

By taking second partial derivatives and equating mixed partials we are
used to seeing these Cauchy-Riemann equations take this form as second order
equations:

∇2u = uxx + uyy = 0 (5)

∇2v = vxx + vyy = 0 (6)

Given this, equation 4 is something that we could have perhaps guessed,
since the square root of the Laplacian operator, is in fact the gradient (there
are an infinite number of such square roots, since any rotation of the coordi-
nate system that expresses the gradient also works). However, a guess of this
isn’t required since we see this explicitly through some logical composition of
relationships.
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The end result is that we can make a statement that in regions where the
complex function is analytic (has a derivative), the gradient of that function is
zero in that region.

This is a kind of interesting result and I expect that this will relevant when
figuring out how the geometric calculus all fits together.

1.1 Verify we still have the Cauchy equations hiding in the
gradient.

We have:

∇ f e1 = ∇(e1u − e2v) = 0

If this is to be zero, both the scalar and bivector parts of this equation must
also be zero.

(∇ · f )e1 = ∇ · (e1u − e2v)
= (e1∂x + e2∂y) · (e1u − e2v)

= (∂xu − ∂yv) = 0

(∇∧ f )e1 = ∇∧ (e1u − e2v)
= (e1∂x + e2∂y) ∧ (e1u − e2v)

= −e1 ∧ e2(∂xv + ∂yu) = 0

We therefore see that this recovers the expected pair of Cauchy equations:

∂xu − ∂yv = 0

∂xv + ∂yu = 0
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