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1 Motivation.

Doran/Lasenby use a +,−,−,− signature, and I had gotten used to that. On
first seeing the alternate signature used by John Denker’s excellent GA ex-
plainatory paper , I found myself disoriented. How many of the identities that
I was used to were metric dependent? Here are some notes that explore some
of the metric dependencies of STA, in particular observing which identities are
metric dependent and which aren’t.

In the end this exploration turned into a big meandering examination and
comparision of the bivector and tensor forms of Maxwell’s equation. That part
has been split into a different writeup.
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2 The guts.

2.1 Spatial basis.

Our spatial (bivector) basis:

σi = γi ∧ γ0 = γi0,

that behaves like Euclidean vectors (positive square) still behave as desired,
regardless of the signature:

σi · σj =
〈
γi0j0

〉
0

= −
〈
γij
〉

0(γ0)2

= −δij(γi)2(γ0)2

Regardless of the signature the pair of products (γi)2(γ0)2 = −1, so our
spatial bivectors are metric invariant.

2.2 How about commutation?

Commutation with
iγµ = γ0123µ = γµ0123

µ has to ”pass” three indexes regardless of metric, so anticommutes for any
µ.

σkγµ = γk0µ

If k = µ, or 0 = µ, then we get a sign inversion, and otherwise commute
(pass two indexes). This is also metric invariant.

2.3 Spatial and time component selection.

With a postive time metric (Doran/Lasenby) selection of the x0 component of
a vector x requires a dot product:

x = x0γ0 + xiγi

x · γ0 = x0(γ0)2

Obviously this is a metric dependent operation. To generalize it appropri-
ately, we need to dot with γ0 instead:

x · γ0 = x0

Now, what do we get when wedging with this upper index quantity in-
stead.
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x ∧ γ0 =
(

x0γ0 + xiγi

)
∧ γ0

= xiγi ∧ γ0

= xiγi0(γ0)2

= xiσi(γ0)2

= x
(

γ0
)2

Not quite the usual expression we are used to, but it still behaves as a eu-
clidan vector (positive square), regardless of the metric:

(x ∧ γ0)2 = (±x)2 = x2

This suggests that we should define our spatial projection vector as x ∧ γ0

instead of x ∧ γ0 as done in Doran/Lasenby (where a positive time metric is
used).

2.3.1 Velocity.

Variation of a event path with some parameter we have:

dx
dλ

=
dxµ

dλ
γµ = c

dt
dλ

γ0 +
dxi

dλ
γi

=
dt
dλ

(
cγ0 +

dxi

dt
γi

)
The square of this is:

1
c2

(
dx
dλ

)2
=
(

dt
dλ

)2
(γ0)2

(
1 +

1
c2

(
dxi

dt

)2

(γi)2(γ0)2

)

=
(

dt
dλ

)2
(γ0)2

(
1− (v/c)2

)
(γ0)2

c2

(
dx
dλ

)2
=
(

dt
dλ

)2 (
1− (v/c)2

)

We define the proper time τ as that particular parameterization cτ = λ such
that the LHS equals 1. This is implicitly defined via the integral

τ =
∫ √

1− (v/c)2dt =
∫ √

1−
(

1
c

dxi

dα

)2

dα
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Regardless of this parameterization α = α(t), this velocity scaled 4D arc
length is the same. This is a bit of a digression from the ideas of metric depen-
dence investigation. There is however a metric dependence in the first steps
arriving at this result.

with proper velocity defined in terms of proper time v = dx/dτ, we also
have:

γ =
dt
dτ

=
1√

1− (v/c)2
(1)

v = γ

(
cγ0 +

dxi

dt
γi

)
(2)

Therefore we can select this quantity γ, and our spatial velocity compo-
nents, from our proper velocity:

cγ = v · γ0

In equation 1 we didn’t define v, only implictly requiring that it’s square
was ∑(dxi/dt)2, as we require for correspondence with Euclidean meaning.
This can be made more exact by taking wedge products to weed out the time
component:

v ∧ γ0 = γ
dxi

dt
γi ∧ γ0

With a definition of v = dxi

dt γi ∧ γ0 (which has the desired positive square),
we therefore have:

v =
v ∧ γ0

γ

=
v ∧ γ0

v/c · γ0

Or,

v/c =
v/c ∧ γ0

v/c · γ0 (3)

All the lead up to this allows for expression of the spatial component of the
proper velocity in a metric independent fashion.

2.4 Reciprocal Vectors.

By reciprocal frame we mean the set of vectors {uα} associated with a basis for
some linear subspace {uα} such that:
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uα · uβ = δ
β
α

In the special case of orthonormal vectors uα · uβ = ±δαβ the reciprocal
frame vectors are just the inverses (literally reciprocals), which can be verified
by taking dot products:

1
uα
· uα =

〈
1

uα
uα

〉
0

=
〈

1
uα

uα

uα
uα

〉
0

=
〈

(uα)2

(uα)2

〉
0

= 1

Written out explicitly for our positive ”orthonormal” time metric:

(γ0)2 = 1

(γi)2 = −1,

we have the reciprocal vectors:

γ0 = γ0

γi = −γi

Note that this last statement is consistent with (γi)2 = −1, since (γi)2 =
γi(−γi) = −δi

i = −1
Contrast this with a positive spatial metric:

(γ0)2 = −1

(γi)2 = 1,

with reciprocal vectors:

γ0 = −γ0

γi = γi

where we have the opposite.
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2.5 Reciprocal Bivectors.

Now, let’s examine the bivector reciprocals. Given our orthonormal vector ba-
sis, let’s invert the bivector and verify that is what we want:

1
γµν

=
1

γµν

γνµ

γνµ

=
1

γµν

1
γνµ

γνµ

=
1

γµννµ
γνµ

=
1

(γµ)2(γν)2 γνµ

Multiplication with our vector we will get 1 if this has the required recipro-
cal relationship:

1
γµν

γµν =
1

(γµ)2(γν)2 γνµγµν

=
(γµ)2(γν)2

(γµ)2(γν)2

= 1

Observe that unlike our basis vectors the bivector reciprocals are metric
independant. Let’s verify this explicitly:

1
γi0

=
1

(γi)2(γ0)2 γ0i

1
γij

=
1

(γi)2(γj)2 γji

1
γ0i

=
1

(γ0)2(γi)2 γi0

With a spacetime mix of indexes we have a −1 denominator for either met-
ric. With a spatial only mix (B components) we have 1 in the denominator
12 = (−1)2 for either metric.

Now, perhaps counter to intuition the reciprocal 1
γµν

of γµν is not γµν, but
instead γνµ. Here the shorthand can be deceptive and it is worth verifying this
statement explicitly:
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γµν · γαβ = (γµ ∧ γν) · (γα ∧ γβ)

= ((γµ ∧ γν) · γα) · γβ)

= (γµ(γν · γα)− γν(γµ · γα)) · γβ)

= (γµδν
α − γνδµ

α) · γβ

Or,
γµν · γαβ = δµ

βδν
α − δν

βδµ
α (4)

In particular for matched pairs of indexes we have:

γµν · γνµ = δµ
µδν

ν − δν
µδµ

ν = 1

2.6 Pseudoscalar expresed with reciprocal frame vectors.

With a positive time metric

γ0123 = −γ0123

(three inversions for each of the spatial quantities). This is metric invari-
ant too since it will match the single negation for the same operation using a
positive spatial metric.

2.7 Spatial bivector basis commutation with pseudoscalar.

I have been used to writing:
σj = γj0

as a spatial basis, and having this equivalent to the four-pseudoscalar, but
this only works with a time positive metric:

i3 = σ123 = γ102030 = γ0123(γ0)2

With the spatial positive spacetime metric we therefore have:

i3 = σ123 = γ102030 = −i4

instead of i3 = i4 as is the case with a time positive spacetime metric. We
see that the metric choice can also be interpretted as a choice of handedness.

That choice allowed Doran/Lasenby to initially write the field as a vector
plus trivector where i is the spatial pseudoscalar:

F = E + icB, (5)

and then later switch the interpretation of i to the four space pseudoscalar.
The freedom to do so is metric dependent freedom, but equation 5 works
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regardless of metric when i is uniformly interpretted as the spacetime pseu-
doscalar.

Regardless of the metric the spacetime pseudoscalar commutes with σj =
γj0, since it anticommutes twice to cross:

σji = γj00123 = γ00123j = γ0123j0 = iσj

2.8 Gradient and Laplacian.

As seen by the Lagrangian based derivation of the (spacetime or spatial) gra-
dient, the form is metric independant and valid even for non-orthonormal
frames:

∇ = γµ ∂

∂xµ

2.8.1 Vector derivative.

A cute aside, as pointed out in John Denker’s paper, for orthonormal frames,
this can also be written as:

∇ =
1

γµ

∂

∂xµ (6)

as a mnemonic for remembering where the signs go, since in that form the
upper and lower indexes are nicely matched in summation convention fashion.

Now, γµ is a constant when we are not working in curvalinear coordinates,
and for constants we are used to the freedom to pull them into our derivatives
as in:

1
c

∂

∂t
=

∂

∂(ct)

Supposing that one had an orthogonal vector decomposition:

x = ∑ γixi = ∑ xi

then, we can abuse notation and do the same thing with our unit vectors,
rewriting the gradient equation 6 as:

∇ =
∂

∂(γµxµ)
= ∑

∂

∂xi
(7)

Is there anything to this that isn’t just abuse of notation? I think so, and I’m
guessing the notational freedom to do this is closely related to what Hestenes
calls geometric calculus.

Expanding out the gradient in the form of equation 7 as a limit statement
this becomes, rather loosely:
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∇ = ∑
i

lim
dxi→0

1
dxi

( f (x + dxi)− f (x))

If nothing else this justifies the notation for the polar form gradient of a
function that is only radially dependent, where the quantity:

∇ = r̂
∂

∂r
=

1
r̂

∂

∂r
is sometimes written:

∇ =
∂

∂r
Tong does this for example in his online dynamics paper, although there it

appears to be not much more than a fancy shorthand for gradient.

2.9 Four-Laplacian.

Now, although our gradient is metric invarient, it’s square the four-Laplacian
is not. There we have:

∇2 = ∑(γµ)2 ∂2

∂2xµ

= (γ0)2
(

∂2

∂2x0 + (γ0)2(γi)2 ∂2

∂2xi

)
= (γ0)2

(
∂2

∂2x0 −
∂2

∂2xi

)
This makes the metric dependency explicit so that we have:

∇2 =
1
c2

∂2

∂2t
− ∂2

∂2xi if (γ0)2 = 1

∇2 =
∂2

∂2xi −
1
c2

∂2

∂2t
if (γ0)2 = −1
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