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1 Torque

Torque is generally defined as the magnitude of the perpendicular force com-
ponent times distance, or work per unit angle.

Suppose a circular path in an arbitrary plane containing orthonormal vec-
tors û and v̂ is parameterized by angle.

r = r(û cos θ + v̂ sin θ) = rû(cos θ + ûv̂ sin θ)

By designating the unit bivector of this plane as the imaginary number

i = ûv̂ = û ∧ v̂

i2 = −1

this path vector can be conveniently written in complex exponential form

r = rûeiθ

and the derivative with respect to angle is

dr
dθ

= rûieiθ = ri

So the torque, the rate of change of work W, due to a force F, is

τ =
dW
dθ

= F · dr
dθ

= F · (ri)

Unlike the cross product description of torque, τ = r × F no vector in a
normal direction had to be introduced, a normal that doesn’t exist in two di-
mensions or in greater than three dimensions. The unit bivector describes the
plane and the orientation of the rotation, and the sense of the rotation is relative
to the angle between the vectors û and v̂.
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1.1 Expanding the result in terms of components

At a glance this doesn’t appear much like the familiar torque as a determi-
nant or cross product, but this can be expanded to demonstrate its equivalance.
Note that the cross product is hiding there in the bivector i = û∧ v̂. Expanding
the position vector in terms of the planar unit vectors

ri = (ruû + rvv̂) ûv̂ = ruv̂ − rvû

and expanding the force by components in the same direction plus the pos-
sible perpendicular remainder term

F = Fuû + Fvv̂ + F⊥û,v̂

and then taking dot products yields is the torque

τ = F · (ri) = ruFv − rvFu

This determinant may be familiar from derivations with û = e1, and v̂ = e2
(See the Feynman lectures Volume I for example).

1.2 Geometrical description

When the magnitude of the ”rotational arm” is factored out, the torque can be
written as

τ = F · (ri) = |r|(F · (r̂i))

The vector r̂i is the unit vector perpendicular to the r. Thus the torque can
also be described as the product of the magnitude of the rotational arm times
the component of the force that is in the direction of the rotation (ie: the work
done rotating something depends on length of the lever, and the size of the
useful part of the force pushing on it).

1.3 Slight generalization. Application of the force to a lever
not in the plane.

If the rotational arm that the force is applied to is not in the plane of rotation
then only the components of the lever arm direction and the component of the
force that are in the plane will contribute to the work done. The calculation
above was general with respect to the direction of the force, so to generalize it
for an arbitrarily oriented lever arm, the quantity r needs to be replaced by the
projection of r onto the plane of rotation.

That component in the plane (bivector) i can be described with the geomet-
ric product nicely

ri = (r · i)
1
i

= −(r · i)i
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Thus, the vector with this magnitude that is perpendicular to this in the
plane of the rotation is

rii = −(r · i)i2 = (r · i)

So, the most general for torque for rotation constrained to the plane i is:

τ = F · (r · i)

This makes sense when once considers that only the dot product part of
ri = r · i + r ∧ i contributes to the component of r in the plane, and when the
lever is in the rotational plane this wedge product component of ri is zero.

1.4 expressing torque as a bivector

The general expression for torque for a rotation constrained to a plane has been
found to be:

τ = F · (r · i)

We have an expectation that torque should have a form similar to the tradi-
tional vector torque

τ = r × F = −i3(r ∧ F)

Note that here i3 = e1e2e3 is the unit pseudoscalar for R3, not the unit
bivector for the rotational plane. We should be able to express torque in a form
related to r ∧ F, but modified in a fashion that results in a scalar value.

When the rotation isn’t constrained to a specific plane the motion will be in

i =
r̂ ∧ r′

‖r̂ ∧ r′‖
The lever arm component in this plane is

r · i =
1
2
(ri − ir)

=
1

2‖r̂ ∧ r′‖ (r(r̂ ∧ r′)− (r̂ ∧ r′)r)

=
1

‖r̂ ∧ r′‖ r(r̂ ∧ r′)

So the torque in this natural plane of rotation is
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τ = F · (r · i)

=
1

‖r̂ ∧ r′‖F · (r(r̂ ∧ r′))

=
1

2‖r̂ ∧ r′‖
(
Fr(r̂ ∧ r′) + (r′ ∧ r̂)rF

)
=

1
2
(Fri + (Fri)†) =

1
2
(irF + (irF)†)

= 〈irF〉0

The torque is the scalar part of i(rF).

τ = 〈i(r · F + r ∧ F)〉0

Since the bivector scalar product i(r · F) here contributes only a bivector
part the scalar part comes only from the i(r ∧ F) component, and one can write
the torque in a fashion that’s very similar to the vector cross product torque.
Here’s both for comparision

τ = 〈i(r ∧ F)〉0

τ = −i3(r ∧ F)

Note again that i here is the unit bivector for the plane of rotation and not
the unit 3D pseudoscalar i3.

1.5 Plane common to force and vector

Physical intuition provides one further way to express this. Namely, the unit
bivector for the rotational plane should also be in the plane common to F and r

i =
F ∧ r√

−(F ∧ r)2

So the torque is

τ =
1√

−(F ∧ r)2
〈(F ∧ r)(r ∧ F)〉0

=
1√

−(F ∧ r)2
(F ∧ r)(r ∧ F)

=
−(r ∧ F)2√
−(r ∧ F)2

=
√
−(r ∧ F)2

= ‖r ∧ F‖
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Above the 〈· · · 〉0 could be dropped because the quantity has only a scalar
part. The fact that the sign of the square root can be either plus or minus follows
from the fact that the orientation of the unit bivector in the r, F plane has two
possibilites. The positive root selection here is due to the orientation picked for
i.

For comparision, this can also be expressed with the cross product:

τ =
√
−(r ∧ F)2

=
√
−(r ∧ F)(r ∧ F)

=
√
−((r × F)i3)(i3(r × F))

=
√

(r × F)2

= ‖r × F‖
= ‖τ‖

1.6 Torque as a bivector.

It is natural to drop the magnitude in the torque expression and name the
bivector quantity

r ∧ F

This defines both the plane of rotation (when that rotation is unconstrained)
and the orientation of the rotation, since inverting either the force or the arm
position will invert the rotational direction.

When examining the general equations for motion of a particle of fixed
mass we will see this quantity again related to the non-radial component of
that particles accelleration. Thus we define a torque bivector

τ = r ∧ F

The magnitude of this bivector is our scalar torque, the rate of change of
work on the object with respect to the angle of rotation.
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