
Kinetic Energy in rotational frame.

Peeter Joot

May 3, 2008

1 Motivation.

Fill in the missing details of the rotational KE derivation in Tong’s classical
dynamics paper and contrast matrix and GA approach.

Generalize acceleration in terms of rotating frame coordinates without un-
proved extrapolation that the z axis result of Tong’s paper is good uncondi-
tionally (his cross products are kind of pulled out of a magic hat and this write
up will show a couple ways to see where they come from).

Given coordinates for a point in a rotating frame r′, the coordinate vector
for that point in a rest frame is:

r = Rr′ (1)

Where the rotating frame moves according to the following z-axis rotation
matrix:

R =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

To compute the Lagrangian we want to reexpress the kinetic energy of a

particle:

K =
1
2

mṙ2

in terms of the rotating frame coordinate system.

2 With matrix formulation.

The Tong paper does this for a z axis rotation with θ = ωt. Constant angular
frequency is assumed.

First we calculate our position vector in terms of the rotational frame

r = Rr′

1

The rest frame velocity is:

ṙ = Ṙθr′ + Rθ ṙ′.

Taking the matrix time derivative we have:

Ṙθ = −θ̇

 sin θ cos θ 0
− cos θ sin θ 0

0 0 0

 .

Taking magnitudes of the velocity we have three terms

ṙ2 = (Ṙθr′) · (Ṙθr′) + 2(Ṙθr′) · (Rθ ṙ′) + (Rθ ṙ′) · (Rθ ṙ′)

= r′TṘT
θ Ṙθr′ + 2r′TṘT

θ Rθ ṙ′ + ṙ′2

We need to calculate all the intermediate matrix products. The last was
identity, and the first is:

ṘT
θ Ṙθ = θ̇2

sin θ − cos θ 0
cos θ sin θ 0

0 0 0

 sin θ cos θ 0
− cos θ sin θ 0

0 0 0

= θ̇2

1 0 0
0 1 0
0 0 0

This leaves just the mixed term

ṘT
θ Rθ = −θ̇

sin θ − cos θ 0
cos θ sin θ 0

0 0 0

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

= −θ̇

0 −1 0
1 0 0
0 0 0

With θ̇ = ω, the total magnitude of the velocity is thus

ṙ2 = r′Tω2

1 0 0
0 1 0
0 0 0

 r′ − 2ωr′T
0 −1 0

1 0 0
0 0 0

 ṙ′ + ṙ′2

Tong’s paper presents this expanded out in terms of coordinates:

ṙ2 = ω2
(

x′2 + y′2
)

+ 2ω
(

x′ẏ′ − y′ ẋ′
)
+

(
ẋ′2 + ẏ′2 + ż′2

)
Or,

ṙ2 =
(
−ωy′ + ẋ′

)2 +
(
ωx′ + ẏ′

)2 + ż′2 (2)

2

He also then goes on to show that this can be written, with ω = ωẑ, as

ṙ2 = (ṙ′ + ω× r′)2

The implication here is that this is a valid result for any rotating coordinate
system. How to prove this in the general rotation case, is shown much later in
his treatment of rigid bodies.

3 With rotor.

The equivalent to equation 1 using a rotor is:

r′ = R†rR (3)

Where R = exp(iθ/2).
Unlike the matrix formulation above we are free to pick any constant unit

bivector for i if we want to generalize this to any rotational axis, but if we want
an equivalent to the above rotation matrix we just have to take i = e1 ∧ e2.

We need a double sided inversion to get our unprimed vector:

r = Rr′R†

and can then take derivatives:

ṙ = Ṙr′R† + Rr′Ṙ† + Rṙ′R†

= iω
1
2

Rr′R† − Rr′R†iω
1
2

+ Rṙ′R†

=⇒ ṙ = ωi · (Rr′R†) + Rṙ′R† (4)

One can put this into the traditional cross product form by introducing a
normal vector for the rotational axis in the usual way:

Ω = ωi

ω = Ω/I3

We can describe the angular velocity by a scaled normal vector (ω) to the
rotational plane, or by a scaled bivector for the plane itself (Ω).

Ω · (Rr′R†) =
〈

ΩRr′R†
〉

1

=
〈

RΩr′R†
〉

1

= RΩ · r′R†

= R(ωI3) · r′R†

= R(ω× r′)R†

3

Note that here as before this is valid only when the rotational plane orien-
tation is constant (ie: no wobble), since only then can we assume i, and thus Ω
will commute with the rotor R.

Summarizing, we can write our velocity using rotational frame components
as:

ṙ = R
(
ω× r′ + ṙ′

)
R† (5)

Or
ṙ = R

(
Ω · r′ + ṙ′

)
R† (6)

Using the result above from equation 5, we can calculate the squared mag-
nitude directly:

ṙ2 =
〈

R
(
ω× r′ + ṙ′

)
R†R

(
ω× r′ + ṙ′

)
R†

〉
=

〈
R(ω× r′ + ṙ′)2R†

〉
= (ω× r′ + ṙ′)2

We are able to go straight to the end result this way without the mess of sine
and cosine terms in the rotation matrix. This is something that we can expand
by components if desired:

ω× r′ + ṙ′ =

∣∣∣∣∣∣
e1 e2 e3
0 0 ω
x′ y′ z′

∣∣∣∣∣∣ + ṙ′

=

−ωy′ + ẋ′
ωx′ + ẏ′

ż′

This verifies the second part of Tong’s equation 2.19, also consistent with

the derivation of equation 2.

4 Acceleration in rotating coordinates.

Having calculated velocity in terms of rotational frame coordinates, accelera-
tion is the next logical step.

The starting point is the velocity

ṙ = R(Ω · r′ + ṙ′)R†

Taking deriviatives we have

r̈ = iω/2ṙ− ṙiω/2 + R
(
Ω̇ · r′ + Ω · ṙ′ + r̈′

)
R†

4

The first two terms are a bivector vector dot product and we can simplify
this as follows

iω/2ṙ− ṙiω/2 = Ω/2ṙ− ṙΩ

= Ω · ṙ

=
〈

ΩR(Ω · r′ + ṙ′)R†
〉

1

=
〈

R(Ω(Ω · r′ + ṙ′))R†
〉

1

= R(Ω · (Ω · r′) + Ω · ṙ′)R†

Thus the total acceleration is

r̈ = R
(
Ω · (Ω · r′) + Ω̇ · r′ + 2Ω · ṙ′ + r̈′

)
R† (7)

Or, in terms of cross products, and angular velocity and acceleration vectors
ω, and α respectively, this is

r̈ = R
(
ω× (ω× r′) + α× r′ + 2ω× ṙ′ + r̈′

)
R† (8)

5 Allow for a wobble in rotational plane.

A calculation similar to this can be found in GAFP, but for strictly rigid mo-
tion. It doesn’t take too much to combine the two for a generalized result that
expresses the total acceleration expressed in rotating frame coordinates, but
also allowing for general rotation where the frame rotation and the angular
velocity bivector don’t have to be coplanar (ie: commute as above).

Since the primes and dots are kind of cumbersome switch to the GAFP
notation where the position of a particle is expressed in terns of a rotational
component x and origin translation x0:

y = RxR† + x0

Taking derivatives for velocity

ẏ = ṘxR† + RxṘ† + RẋR† + ẋ0 (9)

Now use the same observation that the derivative of RR† = 1 is zero:

d(RR†)
dt

= ṘR† + RṘ† = 0

=⇒ ṘR† = −RṘ† = −
(

ṘR†
)†

(10)

5

Since R has only grade 0 and 2 terms, so does its derivative. Thus the prod-
uct of the two has grade 0, 2, and 4 terms, but equation 10 shows that the
product ṘR† has a value that is the negative of its reverse, so it must have only
grade 2 terms (the reverse of the grade 0 and 4 terms would not change sign).

As in equation 4 we want to write Ṙ as a bivector/rotor product and equa-
tion 10 gives us a means to do so. This would have been clearer in GAFP if
they had done the simple example first with the orientation of the rotational
plane fixed.

So, write:

ṘR† =
1
2

Ω

Ṙ =
1
2

ΩR

Ṙ† = −1
2

R†Ω

(including the 1/2 here is a bit of a cheat ... it’s here because having done
the calculation on paper first one sees that it’s natural to do so).

With this we can substitute back into equation 9, writing y0 = y− x0 :

ẏ =
1
2

ΩRxR† − 1
2

RxR†Ω + RẋR† + ẋ0

=
1
2

(Ωy−y0Ω) + RẋR† + ẋ0

= Ω · y0 + RẋR† + ẋ0

We also want to pull in this Ω into the rotor as in the fixed orientation
case, but cannot use commutivity this time since the rotor and angular velocity
bivector aren’t neccessarily in the same plane.

This is where GAFP introduces their body angular velocity, which applies
an inverse rotation to the angular velocity.

Let:
Ω = RΩBR†

Computing this bivector dot product with y we have

6

Ω · y0 = (RΩBR†) · (RxR†)

=
〈

RΩBR†RxR†
〉

1

=
〈

RΩBxR†
〉

1

=
〈

R(ΩB · x + ΩB ∧ x)R†
〉

1

= RΩB · xR†

Thus the total velocity is:

ẏ = R(ΩB · x + ẋ)R† + ẋ0 (11)

Thus given any vector x in the rotating frame coordinate system, we have
the relationship for the inertial frame velocity. We can apply this a second time
to compute the inertial (rest frame) acceleration in terms of rotating coordi-
nates. Write v = ΩB · x + ẋ,

ẏ = RvR† + ẋ0

=⇒ ÿ = R(ΩB · v + v̇)R† + ẍ0

v̇ = Ω̇B · x + ΩB · ẋ + ẍ

Combining these we have:

ÿ = R(ΩB · (ΩB · x + ẋ) + Ω̇B · x + ΩB · ẋ + ẍ)R† + ẍ0

=⇒ ÿ = R(ΩB · (ΩB · x) + Ω̇B · x + 2ΩB · ẋ + ẍ)R† + ẍ0 (12)

This generalizes equation 8, providing the rest frame acceleration in terms
of rotational frame coordinates, with centrifugal acceleration, euler force ac-
celeration, and corolis force acceleration terms that accompany the plain old
acceleration term ẍ. The only requirement for the generality of allowing the
orientation of the rotational plane to potentially vary is the use of the “body an-
gular velocity” ΩB, replacing the angular velocity as seen from the rest frame
Ω.

7

5.1 Body angular acceleration in terms of rest frame.

Since we know the relationship between the body angular velocity ΩB with
the Rotor (rest frame) angular velocity bivector, for completeness, lets compute
the body angular acceleration bivector Ω̇B in terms of the rest frame angular
acceleration Ω̇.

ΩB = R†ΩR

=⇒ Ω̇B = Ṙ†ΩR + R†Ω̇R + R†ΩṘ

= −1
2

R†Ω2R + R†Ω̇R + R†Ω2R
1
2

=
1
2

(
R†Ω2R− R†Ω2R

)
+ R†Ω̇R

= R†Ω̇R

This shows that the body angular acceleration is just an inverse rotation of
the rest frame angular acceleration like the angular velocities are.

6 Revisit general rotation using matrixes.

Having fully calculated velocity and acceleration in terms of rotating frame
coordinates, lets go back and revisit this with matrixes and see how one would
do the same for a general rotation.

Following GAFP express the rest frame coordinates for a point y in terms
of a rotation applied to a rotating frame position x (this is easier than the mess
of primes and dots used in Tong’s paper). Also omit the origin translation (that
can be added in later if desired easily enough)

y = Rx

Thus the deriviative is:

ẏ = Ṙx + Rẋ.

As in the GA case we want to factor this so that we have a rotation applied
to a something that is completely specified in the rotating frame. This is quite
easy with matrixes, as we just have to factor out a rotation matrix from Ṙ:

ẏ = RRTṘx + Rẋ

= R
(

RTṘx + ẋ
)

8

This new product RTṘx we have seen above in the special case of z-axis ro-
tation as a cross product. In the GA general rotation case, we’ve seen that this
as a bivector-vector dot product. Both of these are fundamentally antisymmet-
ric operations, so we expect this of the matrix operator too. Verification of this
antisymmetry follows in almost the same fashion as the GA case, by observing
that the deriviative of an identity matrix I = RTR is zero:

İ = 0

=⇒ ṘTR + RTṘ = 0

=⇒ RTṘ = −ṘTR = −RTṘ
T

Thus if one writes:

Ω = RTṘ (13)

the antisymetric property of this matrix can be summarized as:

Ω = −ΩT.

Let’s write out the form of this matrix in the first few dimensions:

• R2

Ω =
[

0 −a
a 0

]
For some a.

• R3

Ω =

0 −a −b
a 0 −c
b c 0

For some a, b, c.

• R4

Ω =

0 −a −b −d
a 0 −c −e
b c 0 − f
d e f 0

For some a, b, c, d, e, f .

9

For RN we have (N2 − N)/2 degrees of freedom. It’s noteworthy to ob-
serve that this is exactly the number of basis elements of a bivector. For exam-
ple, in R4, such a bivector basis is e12, e13, e14, e23, e24, e34.

For R3 we have three degrees of freedom and because of the antisymmetry
can express this matrix-vector product using the cross product. Let

(a, b, c) = (ω3,−ω2, ω1)

One has:

Ωx =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 x1
x2
x3

 =

−ω3x2 + ω2x3
+ω3x1 −ω1x3
−ω2x1 + ω1x2

 = ω× x

Summarizing the velocity result we have, using Ω from equation 13:

ẏ = R (Ωx + ẋ) (14)

Or, for R3, we can define a body angular velocity vector

ω =

Ω32
Ω13
Ω21

 (15)

and thus write the velocity as:

ẏ = R (ω× x + ẋ) (16)

This, like the GA result is good for general rotations. Then don’t have to be
constant rotation rates, and it allows for arbitrarily oriented as well as wobbly
motion of the rotating frame.

As with the GA general velocity calculation, this general form also allows
us to calculate the squared velocity easily, since the rotation matrixes will can-
cel after transposition:

ẏ2 = (R (ω× x + ẋ)) · (R (ω× x + ẋ)) = (ω× x + ẋ)TRTR (ω× x + ẋ)

=⇒ ẏ2 = (ω× x + ẋ)2

7 Equations of motion from Lagrange partials.

TBD. Do this using the Rotor formulation. How?

10

