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1 The problem.

Want solutions of

∇2 f = ∑
k

∂2 f
∂xk

2 = 0 (1)

For real f.

1.1 One dimension.

Here the problem is easy, just integrate twice:

f = cx + d.

1.2 Two dimensions.

For the two dimensional case we want to solve:

∂2 f
∂x1

2 +
∂2 f
∂x22 = 0

Using separation of variables one can find solutions of the form f = X(x1)Y(x2).
Differentiating we have:

X′′Y + XY′′ = 0

So, for X 6= 0, and Y 6= 0:

X′′

X
= −Y′′

Y
= k2

=⇒ X = ekx

Y = ekiy
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=⇒ f = XY = ek(x+iy)

Here i is anything that squares to -1. Traditionally this is the complex unit
imaginary, but we are also free to use a geometric product unit bivector such
as i = e1 ∧ e2 = e1e2 = e12, or i = e21.

With i = e12 for example we have:

f = XY = ek(x+iy) = ek(x+e12y)

= ek(xe1e1+e12y)

= eke1(xe1+e2y)

Writing x = ∑ xiei, all of the following are solutions of the laplacian

eke1x

exke1

eke2x

exke2

Now there isn’t anything special about the use of the x and y axis so it is
reasonable to expect that, given any constant vector k, the following may also
be solutions to the two dimensional Laplacian problem

exk = ex·k+x∧k (2)

ekx = ex·k−x∧k (3)

1.3 Verifying it’s a solution.

To verify that equations 2 and 3 are Laplacian solutions, start with taking the
first order partial with one of the coordinates. Since there are conditions where
this form of solution works in RN , a two dimensional Laplacian will not be
assumed here.

∂

∂xj
exk

This can be evaluated without any restrictions, but introducing the restric-
tion that the bivector part of xk is coplanar with it’s derivative simplifies the
result considerably. That is introduce a restriction:
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〈
x ∧ k

∂x ∧ k
∂xj

〉
2

=
〈
x ∧ kej ∧ k

〉
2 = 0

With such a restriction we have

∂

∂xj
exk = ejk exk = exk ejk

Now, how does one enforce a restriction of this form in general? Some
thought will show that one way to do so is to require that both x and k have
only two components. Say, components j, and m. Then, summing second par-
tials we have:

∑
u=j,m

∂2

∂xu2 exk =
(
ejkejk + emkemk

)
exk

=
(
ejk(−kej + 2k · ej) + emk(−kem + 2em · k)

)
exk

=
(
−2k2 + 2k2

j + 2kmk jejm + 2k2
m + 2k jkmemj

)
exk

=
(
−2k2 + 2k2 + 2k jkm(emj + ejm)

)
exk

= 0

This proves the result, but essentially just says that this form of solution is
only valid when the constant parameterization vector k and x and its variation
are restricted to a specific plane. That result could have been obtained in much
simpler ways, but I learned a lot about bivector geometry in the approach! (not
all listed here since it caused serious digressions)

1.4 Solution for an arbitrarily oriented plane.

Because the solution above is coordinate free, one would expect that this works
for any solution that is restricted to the plane with bivector i even when those
do not line up with any specific pair of two coordinates. This can be verified
by performing a rotational coordinate transformation of the Laplacian opera-
tor, since one can always pick a pair of mutually orthonagonal basis vectors
with corresponding coordinate vectors that lie in the plane defined by such a
bivector.

Given two arbitary vectors in the space when both are projected onto the
plane with constant bivector i their product is:(

x · i
1
i

) (
1
i

i · k
)

= (x · i)(k · i)
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Thus one can express the general equation for a planar solution to the ho-
mogenious Laplace equation in the form

exp((x · i)(k · i)) = exp((x · i) · (k · i) + (x · i) ∧ (k · i)) (4)

1.5 Characterization in real numbers

Now that it has been verified that equations 2 and 3 are solutions of equation
1 let’s characterize this in terms of real numbers.

If x, and k are colinear, the solution has the form

e±x·k (5)

(ie: purely hyperbolic solutions).
Whereas with x and k othogonal we have can employ the unit bivector for

the plane spanned by these vectors i = x∧k
|x∧k| :

e±x∧k = cos|x ∧ k| ± i sin|x ∧ k| (6)

Or:

e±x∧k = cos
(

x ∧ k
i

)
± i sin

(
x ∧ k

i

)
(7)

(ie: purely trigonometric solutions)
Provided x, and k aren’t colinear, the wedge product component of the

above can be written in terms of a unit bivector i = x∧k
|x∧k| :

exk = ex·k+x∧k

= ex·k (cos |x ∧ k|+ i sin |x ∧ k|)

= ex·k
(

cos
(

x ∧ k
i

)
+ i sin

(
x ∧ k

i

))

And, for the reverse:

(exk)† = ekx = ex·k (cos |x ∧ k| − i sin (|x ∧ k|))

= ex·k
(

cos
(

x ∧ k
i

)
− i sin

(
x ∧ k

i

))

This exponential however has both scalar and bivector parts, and we are
looking for a strictly scalar result, so we can use linear combinations of the
exponential and its reverse to form a strictly real sum for the x ∧ k 6= 0 cases:
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1
2

(
exk + ekx

)
= ex·k cos

(
x ∧ k

i

)
1
2i

(
exk − ekx

)
= ex·k sin

x ∧ k
i

Also note that further linear combinations (with positive and negative vari-
ations of k) can be taken, so we can combine equations 2 and 3 into the follow-
ing real valued, coordinate free, form:

cosh(x · k) cos
(

x ∧ k
i

)
(8)

sinh(x · k) cos
(

x ∧ k
i

)
(9)

cosh(x · k) sin
(

x ∧ k
i

)
(10)

sinh(x · k) sin
(

x ∧ k
i

)
(11)

Observe that the ratio x∧k
i is just a scalar determinant

x ∧ k
i

= xjkm − xmk j

So one is free to choose k′ = kmej − k jem, in which case the solution takes
the alternate form:

cos(x · k′) cosh
(

x ∧ k′

i

)
(12)

sin(x · k′) cosh
(

x ∧ k′

i

)
(13)

cos(x · k′) sinh
(

x ∧ k′

i

)
(14)

sin(x · k′) sinh
(

x ∧ k′

i

)
(15)

These sets of equations and the exponential form both remove the explicit
reference to the pair of coordinates used in the original restriction〈

x ∧ kej ∧ k
〉

2 = 0

that was used in the proof that exk was a solution.
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