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In the classical limit the Lagrangian action for a point particle in a general po-
sition dependent field is:

S = %mv2 — @ (1)

Given the Lagrange equations that minimize the action, it is fairly simple
to derive the Newtonian force law.
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Multiplication of this result with the unit vector e;, and summing over all
unit vectors we have:

Zei% (mx’) = —Zei%

Or, using the gradient operator, and writing v =) e;x', we have:

1.1 The mistake hiding above.

Now, despite the use of upper and lower pairs of indexes for the basis vectors
and coordinates, this result is not valid for a general set of basis vectors. This
initially confused the author, since the RHS sum v = ¥ e;0' is valid for any
set of basis vectors independent of the orthonormality of that set of basis vec-
tors. This is assuming that these coordinate pairs follow the usual reciprocal
relationships:
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However, the LHS that implicitly defines the gradient as:

0
V = Zei@

is a result that is only valid when the set of basis vectors e; is orthonormal.
The general result is expected instead to be:

; 0
V == el -—
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This is how the gradient is defined (without motivation) in Doran/Lasenby.
One can however demonstrate that this definition, and not V = Zei%, is
required by doing a computation of something like V||x||* with x = Y_x'e; for
a general basis e; to demonstrate this. An example of this can be found in the
appendix below.

So where did things go wrong? It was in one of the “obvious” skipped
steps: v = Y xixi. It is in that spot where there is a hidden orthonormal frame
vector requirement since a general basis will have mixed product terms too (ie:
non-diagonal metric tensor).

Expressed in full for general frame vectors the action to minimize is the
following:
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Or, expressed using a metric tensor g;; = e; - e;, this is:
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1.2 Equations of motion for vectors in a general frame.

Now we are in shape to properly calculate the equations of motion from the
Lagrangian action minimization equations.
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The requirement for reciprocal pairs of coordinates and basis frame vec-
tors is due to the summation v = ) e;x’, and it allows us to write all of the
Lagrangian equations in vector form for an arbitrary frame basis as:

d(mv) 0P
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dt Bl ©)

If we are calling this RHS a gradient relationship in an orthonormal frame,
we therefore must define the following as the gradient for the general frame:

d
V:2J$E (6)

The Lagrange equations that minimize the action still generate equations
of motion that hold when the coordinate and basis vectors cannot be summed
in this fashion. In such a case, however, the ability to merge the generalized
coordinate equations of motion into a single vector relationship will not be
possible.



2 Appendix. Scratch calculations.

21 frame vector in terms of metric tensor, and reciprocal pairs.
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2.2 Gradient calculation for an absolute vector magnitude func-

tion.

As a verification that the gradient as defined in equation 6 works as expected,
lets do a calculation that we know the answer as computed with an orthonor-
mal basis.
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