
Oblique projection and reciprocal frame
vectors.

Peeter Joot peeter.joot@gmail.com

May 16, 2008. Last Revision: Date : 2009/04/0613 : 00 : 34

Contents

1 Motivation. 1

2 Using GA. Oblique projection onto a line. 1

3 Oblique projection onto a line using matrices. 3

4 Oblique projection onto hyperplane. 5
4.1 Non metric solution using wedge products. 5

4.1.1 Q: reduction of this . 5
4.2 hyperplane directed projection using matrixes. 6

5 Projection using reciprocal frame vectors. 7
5.1 example/verification. 9

6 Directed projection in terms of reciprocal frames. 9
6.1 Calculation efficiency. 10

7 Followup. 10

1 Motivation.

Followup on wikipedia projection article’s description of an oblique projection.
Calculate this myself.

2 Using GA. Oblique projection onto a line.

INSERT DIAGRAM.
Problem is to project a vector x onto a line with direction p̂, along a direction

vector d̂.
Write:

1

x + αd̂ = βp̂ (1)

and solve for p = βp̂. Wedging with d̂ provides the solution:

x ∧ d̂ + α d̂ ∧ d̂︸ ︷︷ ︸
=0

= βp̂ ∧ d̂

=⇒ β =
x ∧ d̂
p̂ ∧ d̂

So the “oblique” projection onto this line (using direction d̂) is:

Projd̂→p̂(x) =
x ∧ d̂
p̂ ∧ d̂

p̂ (2)

This also shows that we do not need unit vectors for this sort of projection
operation, since we can scale these two vectors by any quantity since they are
in both the numerator and denominator.

Let D, and P be vectors in the directions of d̂, and p̂ respectively. Then the
projection can also be written:

ProjD→P(x) =
x ∧ D
P ∧ D

P (3)

It’s interesting to see projection expressed here without any sort of dot
product when all our previous projection calculations had intrinsic require-
ments for a metric.

Now, let’s compare this to the matrix forms of projection that we have be-
come familiar with. For the matrix result we need a metric, but because this
result is intrisically non-metric, we can introduce one if convienent and express
this result with that too. Such an expansion is:

x ∧ D
P ∧ D

P = x ∧ D
D ∧ P
D ∧ P

1
P ∧ D

P

= (x ∧ D) · (D ∧ P)
1

|P ∧ D|2 P

= ((x ∧ D) · D) · P
1

|P ∧ D|2 P

= (xD2 − x · DD) · P
1

|P ∧ D|2 P

=
x · PD2 − x · DD · P

P2D2 − (P · D)2 P

This gives us the projection explicitly:

2

ProjD→P(x) =
(

x · PD2 − DD · P
P2D2 − (P · D)2

)
P (4)

It sure doesn’t simplify things to expand things out, but we now have things
prepared to express in matrix form.

Assuming a euclidian metrix, and a bit of playing shows that the denomi-
nator can be written more simply as:

P2D2 − (P · D)2 =
∣∣UTU

∣∣
where:

U =
[
P D

]
Similarily the numerator can be written:

x · PD2 − x · DD · P = DTU
[

0 −1
1 0

]
UTx.

Combining these yields a projection matrix:

ProjD→P(x) =

(
P

1∣∣UTU
∣∣DTU

[
0 −1
1 0

]
UT

)
x. (5)

The alternation above suggests that this is related to the matrix inverse of
something. Let’s try to calculate this directly instead.

3 Oblique projection onto a line using matrices.

Let’s start at the same place as in equation 1, except that we know we can
discard the unit vectors and work with any vectors in the projection directions:

x + αD = βP (6)

Assuming an inner product, we have two sets of results:

〈P, x〉+ α〈P, D〉 = β〈P, P〉
〈D, x〉+ α〈D, D〉 = β〈D, P〉

and can solve this for α, and β.[
〈P, D〉 〈P, P〉
〈D, D〉 〈D, P〉

] [
−α
β

]
=
[
〈P, x〉
〈D, x〉

]
(7)

If our inner product is defined by 〈u, v〉 = u∗Av, we have:

3

[
〈P, D〉 〈P, P〉
〈D, D〉 〈D, P〉

]
=
[

P∗AD P∗AP
D∗AD D∗AP

]
=
[
P D

]∗A
[
D P

]
Thus the solution to equation 7 is[

−α
β

]
=

(
1[

P D
]∗A

[
D P

] [P D
]∗A

)
x (8)

Again writing U =
[
P D

]
, this is:

[
−α
β

]
=

 1

U∗AU
[

0 1
1 0

]U∗A

 x

=
([

0 1
1 0

]
1

U∗AU
U∗A

)
x

Since we only care about solution for β to find the projection, we have to
discard half the inversion work, and just select that part of the solution (sug-
gests that a Cramer’s rule method is more efficient than matrix inversion in
this case) :

β =
[
0 1

] [−α
β

]
Thus the solution of this oblique projection problem in terms of matrixes is:

ProjD→P(x) =
(

P
[
0 1

] [0 1
1 0

]
1

U∗AU
U∗A

)
x

Which is:

ProjD→P(x) =
(

P
[
1 0

] 1
U∗AU

U∗A
)

x (9)

Explicit expansion can be done easily enough to show that this is identical
to equation 4, so the question of what we were implicitly inverting in equation
5 is answered.

4

4 Oblique projection onto hyperplane.

Now that we’ve got this directed projection problem solved for a line in both
GA and matrix form, the next logical step is a k-dimensional hyperplane pro-
jection. The equation to solve is now:

x + αD = ∑ βiPi (10)

4.1 Non metric solution using wedge products.

For x with some component not in the hyperplane, we can wedge with P =
P1 ∧ P2 ∧ · · · ∧ Pk

x ∧ P + αD ∧ P =
k

∑
i=1

βi Pi ∧ P︸ ︷︷ ︸
=0

Thus the projection onto the hyperplane spanned by P is going from x along
D is x + αD:

ProjD→P(x) = x − x ∧ P
D ∧ P

D (11)

4.1.1 Q: reduction of this

When P is a single vector we can reduce this to our previous result:

ProjD→P(x) = x − x ∧ P
D ∧ P

D

=
1

D ∧ P
((D ∧ P)x − (x ∧ P)D)

=
1

D ∧ P
((D ∧ P) · x − (x ∧ P) · D)

=
1

D ∧ P
(DP · x − PD · x − xP · D + Px · D)

=
1

D ∧ P
(DP · x − xP · D)

Which is:
ProjD→P(x) =

1
P ∧ D

P · (D ∧ x). (12)

A result that is equivalent to our original equation 3. Can we similarily
reduce the general result to something of this form. Initially I wrote:

5

ProjD→P(x) = x − x ∧ P
D ∧ P

D

=
D ∧ P
D ∧ P

x − x ∧ P
D ∧ P

D

=
1

D ∧ P
((D ∧ P)x − (x ∧ P)D)

=
1

D ∧ P
((D ∧ P) · x − (x ∧ P) · D)

=
1

D ∧ P
(DP · x − PD · x − xP · D + Px · D)

=
1

D ∧ P
(DP · x − xP · D)

= − 1
D ∧ P

P · (D ∧ x)

However, I’m not sure that about the manipulations done on the last few
lines where P has grade greater than 1 (ie: the triple product expansion and
recollection later).

4.2 hyperplane directed projection using matrixes.

To solve equation 10 using matrixes, we can take a set of inner products:

〈D, x〉+ α〈D, D〉 =
k

∑
u=1

βu〈D, Pu〉

〈Pi, x〉+ α〈Pi, D〉 =
k

∑
u=1

βu〈Pi, Pu〉

Write D = Pk+1, and α = −βk+1 for symmetry, which reduces this to:

〈Pk+1, x〉 =
k

∑
u=1

βu〈Pk+1, Pu〉+ βk+1〈Pk+1, Pk+1〉

〈Pi, x〉 =
k

∑
u=1

βu〈Pi, Pu〉+ βk+1〈Pi, Pk+1〉

That is the following set of equations:

〈Pi, x〉 =
k+1

∑
u=1

βu〈Pi, Pu〉

Which we can now express as a single matrix equation (for i, j ∈ [1, k + 1]) :

6

[
〈Pi, x〉

]
i =

[
〈Pi, Pj〉

]
ij

[
βi
]

i (13)

Solving for β =
[
βi
]

i, gives:

β =
1[

〈Pi, Pj〉
]

ij

[
〈Pi, x〉

]
i

The projective components of interest are ∑k
i=1 βiPi. In matrix form that is:

[
P1 P2 · · · Pk

]

β1
β2
...

βk

 =
[
P1 P2 · · · Pk

] [
Ik,k 0k,1

]
β

Therefore the directed projection is:

ProjD→P(x) =
[
P1 P2 · · · Pk

] [
Ik,k 0k,1

] 1[
〈Pi, Pj〉

]
ij

[
〈Pi, x〉

]
i (14)

As before writing U =
[
P1 P2 · · · Pk D

]
, and write 〈u, v〉 = u∗Av.

The directed projection is now:

ProjD→P(x) =
(

U
[

Ik,k
01,k

] [
Ik,k 0k,1

] 1
U∗AU

U∗A
)

x

=
(

U
[

Ik,k 0k,1
01,k 01,1

]
1

U∗AU
U∗A

)
x (15)

5 Projection using reciprocal frame vectors.

In a sense the projection operation is essentially a calculation of components
of vectors that span a given subspace. We can also calculate these comopo-
nents using a reciprocal frame. To start with consider just orthogonal projec-
tion, where the equation to solve is:

x = e + ∑ β jPj (16)

and e · Pi = 0.
Introduce a reciprocal frame {Pj} that also spans the space of {Pj}, and is

defined by:

Pi · Pj = δij

With this we have:

7

x · Pi = e · Pi︸ ︷︷ ︸
=0

+ ∑ β jPj · Pi

= ∑ β jδij

= βi

x = e + ∑ Pj(Pj · x)

For a euclidian metric the projection part of this is:

ProjP(x) =
(
∑ Pj(Pj)T

)
x (17)

Note that there is a freedom to remove the dot product that was employed
to form the matrix representation of 17 that may not be obvious. I did not find
that this was obvious, when seen in Prof. Gilbert Strang’s MIT OCW lectures,
and had to prove it for myself. That proof is available at the end of the follow-
ing my earlier notes [Joot(a)] comparing the geometric and matrix projection
operations , in the ’That we can remove parenthesis to form projection matrix
in line projection equation.’ subsection.

Writing P =
[
P1 P2 · · · Pk

]
and for the reciprocal frame vectors: Q =[

P1 P2 · · · Pk
]

We now have the following simple calculation for the projection matrix
onto a set of linearly independent vectors (columns of P):

ProjP(x) = PQTx. (18)

Compare to the general projection matrix previously calculated when the
columns of P weren’t orthonormal:

ProjP(x) = P
1

PTP
PTx (19)

With orthonormal columns the PT P becomes identity and the inverse term
drops out, and we get something similar with reciprocal frames. As a side
effect this shows us how to calculate without GA the reciprocal frame vectors.
Those vectors are thus the columns of

Q = P
1

PTP
(20)

We are thus able to get a specific understanding of some of the interior
terms of the general orthogonal projection matrix.

Also note that the orthonormality of these columns is confirmed by observ-
ing that QTP = 1

PTP PTP = I.

8

5.1 example/verification.

As an example to see that this works write:

P =

1 1
1 0
0 1

PTP =

[
1 1 0
1 0 1

] 1 1
1 0
0 1

 =
[

2 1
1 2

]
1

PTP
=

1
3

[
2 −1
−1 2

]

Q = P
1

PTP
=

1
3

1 1
1 0
0 1

 [2 −1
−1 2

]
=

1
3

 1 1
2 1
−1 2

By inspection these columns have the desired properties.

6 Directed projection in terms of reciprocal frames.

Suppose that one has a set of vectors {Pi} that span the subspace that contains
the vector to be projected x. If one wants to project onto a subset of those Pk,
say, the first k of l of these vectors, and wants the projection directed along com-
ponents of the remaining l − k of these vectors, then solution of the following
is required:

x =
l

∑
j=1

β jPj

This (affine?) projection is then just the ∑k
j=1 β jPj components of this vector.

Given a reciprocal frame for the space, the solution follows immediately.

Pi · x = ∑ β jPi · Pj = βi

βi = Pi · x

Or,

ProjPk
(x) =

k

∑
j=1

PjPj · x

In matrix form, with inner product u ·v = u∗Av, and writing P =
[
P1 P2 · · · Pl

]
,

and Q =
[
P1 P2 · · · Pl

]
, this is:

9

ProjPk
(x) =

(
P
[

Ik 0
0 0

]
Q∗A

)
x (21)

Observe that the reciprocal frame vectors can be expressed as the rows of
the matrix

Q∗A =
1

P∗AP
P∗A

Assuming the matrix of dot product is inverable, the reciprocal frame vec-
tors are the columns of:

Q = P
1

P∗A∗P
(22)

I’d expect that the matrix of most dot product forms would also have
A = A∗ (ie: hermitian symmetric).
That is certainly true for all the vector dot products I’m interested in uti-

lizing. ie: the standard euclidean dot product, Minkowski space time metrics,
and complex field vector space inner products (all of those are not only real
symmetric, but are also all diagonal). For completeness, exploring this form
for a more generalized form of inner product was also explored in [Joot(b)].

6.1 Calculation efficiency.

It would be interesting to compare the computational complexity for a set of
reciprocal frame vectors calculated with the GA method (where overhat indi-
cates omission) :

Pi = (−1)i−1P1 ∧ · · · P̂i · · · ∧ Pk
1

P1 ∧ P2 ∧ · · · ∧ Pk

The wedge in the denominator can be done just once for all the frame vec-
tors. Is there a way to use that for the numerator too (dividing out the wedge
product with the vector in question)?

Calculation of the 1
PTP term could be avoided by using SVD.

Writing P = UΣVT, the reciprocal frame vectors will be Q = UΣ 1
ΣTΣ VT.

Would that be any more effecient, or perhaps more importantly, for larger
degree vectors is that a more numerically stable calculation?

7 Followup.

Review: Have questionable GA algebra reduction earlier for grade > 1 (fol-
lowing equation 12).

Q: Can a directed frame vector projection be defined in terms of an “oblique”
dot product.

Q: What applications would a non-diagonal bilinear form have?
Editorial: I’ve defined the inner product in matrix form with:

10

〈u, v〉 = u∗Av

This is slightly irregular since it’s the conguagate of the normal complex
inner product, so in retrospect I would have been better to express things as:

〈u, v〉 = uT Av̄

Editorial: I’ve used the term oblique projection. In retrospect I think I’ve
really been describing what is closer to an affine (non-metric) projection so that
would probably have been better to use.

References

[Joot(a)] Peeter Joot. Matrix review. ”http://sites.google.com/site/
peeterjoot/geometric-algebra/projection with matrix comparison.
pdf”, a.

[Joot(b)] Peeter Joot. Projection with generalized dot product.
”http://sites.google.com/site/peeterjoot/geometric-algebra/
proj generalized dot prod.pdf”, b.

11

http://sites.google.com/site/peeterjoot/geometric-algebra/projection_with_matrix_comparison.pdf
http://sites.google.com/site/peeterjoot/geometric-algebra/projection_with_matrix_comparison.pdf
http://sites.google.com/site/peeterjoot/geometric-algebra/projection_with_matrix_comparison.pdf
http://sites.google.com/site/peeterjoot/geometric-algebra/proj_generalized_dot_prod.pdf
http://sites.google.com/site/peeterjoot/geometric-algebra/proj_generalized_dot_prod.pdf

	 Motivation.
	 Using GA. Oblique projection onto a line.
	 Oblique projection onto a line using matrices.
	 Oblique projection onto hyperplane.
	 Non metric solution using wedge products.
	 Q: reduction of this

	 hyperplane directed projection using matrixes.

	 Projection using reciprocal frame vectors.
	 example/verification.

	 Directed projection in terms of reciprocal frames.
	 Calculation efficiency.

	 Followup.

