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Attempting some Lagrangian calculation problems I found I got all the signs
of my potential energy terms wrong. Here’s a quick step back to basics to
clarify for myself what the definition of potential energy is, and thus implicitly
determine the correct signs.

Starting with kinetic energy, expressed in vector form:

K =
1
2

mr′ · r′ =
1
2

p · r′,

one can calculate the rate of change of that energy:

dK
dt

=
1
2

(
p′ · r′ + p · r′′

)
=

1
2

(
p′ · r′ + r′ · p′

)
= p′ · r′.

Note that the mass has been assumed constant above.
Integrating this time rate of change of kinetic energy produces a force line

integral:

K2 − K1 =
∫ t2

t1

dK
dt

dt

=
∫ t2

t1
p′ · r′dt

=
∫ t2

t1
p′ · dr′

dt
dt

=
∫ r2

r1

F · dr

For the path integral to depend on only the end points or the corresponding
end times requires a conservative force that can be expressed as a gradient.
Let’s say that F = ∇ f , then integrating:
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K2 − K1 =
∫ r2

r1

F · dr

=
∫ r2

r1

∇ f · dr

= limitε→0

∫ r1+εr̂

r1

(
r̂

f (r + εr̂)
ε

)
· dr

= handwaving
= f (r2)− f (r1).

Assembling the quantities for times 1, and 2, we have

K2 − f (r2) = K1 − f (r1) = constant. (1)

This constant is what we give the name Energy. The quantities − f (ri) we
label potential energy Vi, and finally write the total energy as the sum of the
kinetic and potential energies for a particle at a point in time and space:

K2 + V2 = K1 + V1 = E (2)

F = −∇V (3)

1.1 Work with a specific example. Newtonian gravitational
force.

Take the gravitional force:

F = −GmM
r2 r̂ (4)

The rate of change of kinetic energy with respect to such a force (FIXME:
think though signs ... with or against?), is:

dK
dt

= p′ · r′

= −GmM
r2 r̂ · dr

dt

= −GmM
r3 r · dr

dt
.

The vector dot products above can be eliminated with the standard trick:

dr2

dt
=

r · r
dt

= 2
dr
dt
· r.
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Thus,

dK
dt

= −GmM
2r3

dr2

dt

= −GmM
r2

dr
dt

=
d
dt

(
GmM

r

)
.

This can be integrated to find the kinetic energy difference associated with
a change of position in a gravitational field:

K2 − K1 =
∫ t2

t1

d
dt

(
GmM

r

)
dt

= GmM
(

1
r2
− 1

r1

)
.

Or,

K2 −
GmM

r2
= K1 −

GmM
r1

= E.

Taking gradients of this negative term:

∇
(
−GmM

r

)
= r̂

∂

∂r

(
−GmM

r

)
= r̂

GmM
r2 ,

returns the negation of the original force, so if we write V = −GmM/r, it
implies the force is:

F = −∇V. (5)

By this example we see how one arrives at the negative sign convention for
the potential energy. Our Lagrangian in a gravitational field is thus:

L =
1
2

mv2 +
GmM

r
. (6)

Now, we’ve seen strictly positive terms mgh in the Lagrangian in the Tong
and Goldstein examples. We can account for this by Taylor expanding this
potential in the vicinity of the surface R of the Earth:

3



GmM
r

=
GmM
R + h

=
GmM

R(1 + h/R)

≈ GmM
R

(1− h/R)

The Lagrangian is thus:

L ≈ 1
2

mv2 +
GmM

R
− GmM

R2 h

but the constant term won’t change the EOM, so can be dropped from the
Lagrangian, and with g = GM

R2 we have:

L′ =
1
2

mv2 − gmh (7)

Here the potential term of the Lagrangian is negative, but in the Goldstein
and Tong examples the reference point is up, and the height is measured down
from that point. Put another way, if the total energy is

E = V0

when the mass is unmoving in the air, and then drops gaining Kinetic en-
ergy, an unchanged total energy means that potential energy must be counted
as lost, in proportion to the distance fallen:

E = V0 = K1 + V1 =
1
2

mv2 −mgh.

So, one can write

V = −mgh

and
L′ =

1
2

mv2 + gmh (8)

BUT. Here the height h is the distance fallen from the reference point, com-
pared to equation 7, where h was the distance measured up from the surface of
the Earth (or other convienent local point where the gravitational field can be
linearly approximated)!

Care must be taken here because it’s all too easy to get the signs wrong
blindly plugging into the equations without considering where they come from
and how exactly they are defined.
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