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1 Approach without Geometric Algebra.

Without employing geometric algebra, one can use the projection operation
expressed as a dot product and calculate the a vector orthogonal to a set of
other vectors, in the direction of a reference vector.

Such a calculation also yields RN results in terms of determinants, and as a
side effect produces equations for parallelogram area, parallelopiped volume
and higher dimensional analogues as a side effect (without having to employ
change of basis diagonalization arguments that don’t work well for higher di-
mensional subspaces).

1.1 Orthogonal to one vector

The simplest case is the vector perpendicular to another. In anything but R2

there are a whole set of such vectors, so to express this as a non-set result a
reference vector is required.

Calculation of the coordinate vector for this case follows directly from the
dot product. Borrowing the GA term, we subtract the projection to calculate
the rejection.

Rejû (v) = v − v · ûû

=
1

u2 (vu2 − v · uu)

=
1

u2 ∑ vieiujuj − vjujuiei

=
1

u2 ∑ ujei

∣∣∣∣vi vj
ui uj

∣∣∣∣
=

1
u2 ∑

i<j
(uiej − ujei)

∣∣∣∣ui uj
vi vj

∣∣∣∣
Thus we can write the rejection of v from û as:
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Rejû (v) =
1

u2 ∑
i<j

∣∣∣∣ui uj
vi vj

∣∣∣∣ ∣∣∣∣ui uj
ei ej

∣∣∣∣ (1)

Or introducing some shorthand:

Duv
ij =

∣∣∣∣ui uj
vi vj

∣∣∣∣
Due

ij =
∣∣∣∣ui uj
ei ej

∣∣∣∣
equation 1 can be expressed in a form that will be slightly more convient

for larger sets of vectors:

Rejû (v) =
1

u2 ∑
i<j

Duv
ij Due

ij (2)

Note that although the GA axiom u2 = u · u has been used in equations
1 and 2 above and the derivation, that was not necessary to prove them. This
can, for now, be thought of as a notational convenience, to avoid having to
write u · u, or ‖u‖2.

This result can be used to express the RN area of a parallelogram since we
just have to multiply the length of Rejû (v):

‖Rejû (v)‖2 = Rejû (v) · v =
1

u2 ∑
i<j

(
Duv

ij

)2

with the length of the base ‖u‖. [FIXME: insert figure.]
Thus the area (squared) is:

A2
u,v = ∑

i<j

(
Duv

ij

)2
(3)

For the special case of a vector in R2 this is

Au,v = |Duv
12 | = abs

(∣∣∣∣ui uj
vi vj

∣∣∣∣) (4)

1.2 Vector orthogonal to two vectors in direction of a third.

The same procedure can be followed for three vectors, but the algebra gets
messier. Given three vectors u, v, and w we can calculate the component w′ of
w perpendicular to u and v. That is:

2



v′ = v − v · ûû
=⇒

w′ = w − w · ûû − w · v̂′v̂′

After expanding this out, a number of the terms magically cancel out and
one is left with

w′′ = w′(u2v2 − (u · v)2) = u
(
−u · wv2 + (u · v)(v · w)

)
+ v

(
−u2(v · w)− (u · v)(u · w)

)
+ w

(
u2v2 − (u · v)2

)

And this in turn can be expanded in terms of coordinates and the results
collected yielding

w′′ = ∑ eiujvk

(
ui

∣∣∣∣vj vk
wj wk

∣∣∣∣− vi

∣∣∣∣uj uk
wj wk

∣∣∣∣wi

∣∣∣∣uj uk
vj vk

∣∣∣∣)

= ∑ eiujvk

∣∣∣∣∣∣
ui uj uk
vi vj vk
wi wj wk

∣∣∣∣∣∣
= ∑

i,j<k
ei

∣∣∣∣uj uk
vj vk

∣∣∣∣
∣∣∣∣∣∣
ui uj uk
vi vj vk
wi wj wk

∣∣∣∣∣∣
=

(
∑

i<j<k
+ ∑

j<i<k
+ ∑

j<k<i

)
ei

∣∣∣∣uj uk
vj vk

∣∣∣∣
∣∣∣∣∣∣
ui uj uk
vi vj vk
wi wj wk

∣∣∣∣∣∣ .

Expanding the sum of the denominator in terms of coordinates:

u2v2 − (u · v)2 = ∑
i<j

∣∣∣∣ui uj
vi vj

∣∣∣∣2
and using a change of summation indexes, our final result for the vector

perpendicular to two others in the direction of a third is:

Rejû,v̂ (w) =

∑i<j<k

∣∣∣∣∣∣
ui uj uk
vi vj vk
wi wj wk

∣∣∣∣∣∣
∣∣∣∣∣∣
ui uj uk
vi vj vk
ei ej ek

∣∣∣∣∣∣
∑i<j

∣∣∣∣ui uj
vi vj

∣∣∣∣2
(5)
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As a small aside, it is notable here to observe that span
{∣∣∣∣ui uj

ei ej

∣∣∣∣} is the

null space for the vector u, and the set span


∣∣∣∣∣∣
ui uj uk
vi vj vk
ei ej ek

∣∣∣∣∣∣
 is the null space

for the two vectors u and v respectively.
Since the rejection is a normal to the set of vectors it must necessarily in-

clude these cross product like determinant terms.
As in equation 2, use of a Duvw

ijk notation allows for a more compact result:

Rejûv̂ (w) =

(
∑
i<j

(
Duv

ij

)2
)−1

∑
i<j<k

Duvw
ijk Duve

ijk (6)

And, as before this yields the Volume of the parallelopiped by multiplying
perpendicular height:

‖Rejûv̂ (w)‖ = Rejûv̂ (w) · w =

(
∑
i<j

(
Duv

ij

)2
)−1

∑
i<j<k

(
Duvw

ijk

)2

by the base area.
Thus the squared volume of a parallelopiped spanned by the three vectors

is:

V2
u,v,w = ∑

i<j<k

(
Duvw

ijk

)2
. (7)

The simplest case is for R3 where we have only one summand:

Vu,v,w = |Duvw
ijk | = abs

∣∣∣∣∣∣
u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣
 . (8)

1.3 Generalization. Inductive Hypothesis.

There are two things to prove

1. hypervolume of parallelopiped spanned by vectors u1, u2, . . . , uk

V2
u1,u2,··· ,uk

= ∑
i1<i2<···<ik

(
D

ui1
ui2 ···uik

i1i2···ik

)2
(9)

2. Orthogonal rejection of a set of vectors in direction of another.

Rejû1···ûk−1
(uk) =

∑i1<···<ik D
ui1

···uik
i1···ik D

ui1
···uik−1

e
i1···ik

∑i1<···<ik−1

(
D

ui1
···uik−1

i1···ik−1

)2 (10)
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I cannot recall if I ever did the inductive proof for this. Proving for the
initial case is done (since it’s proved for both the two and three vector cases).
For the limiting case where k = n it can be observed that this is normal to all
the others, so the only thing to prove for that case is if the scaling provided by
hypervolume equation 9 is correct.

1.4 Scaling required for reciprocal frame vector.

Presuming an inductive proof of the general result of 10 is possible, this rejec-
tion has the property

Rejû1···ûk−1
(uk) · ui ∝ δki

With the scaling factor picked so that this equals δki, the resulting “recipro-
cal frame vector” is

uk =
∑i1<···<ik D

ui1
···uik

i1···ik D
ui1

···uik−1
e

i1···ik

∑i1<···<ik

(
D

ui1
···uik

i1···ik

)2 (11)

The superscript notation is borrowed from Doran/Lasenby, and denotes
not a vector raised to a power, but this this special vector satisfying the follow-
ing orthogonality and scaling criteria:

uk · ui = δki. (12)

Note that for k = n − 1, equation 11 reduces to

un =
Du1···un−1e

1···(n−1)

Du1···un
1···n

. (13)

This or some other scaled version of this is likely as close as we can come to
generalizing the cross product as an operation that takes vectors to vectors.

1.5 Example. R3 case. Perpendicular to two vectors.

Observe that for R3, writing u = u1, v = u2, w = u3, and w′ = u3
3 this is:

w′ =

∣∣∣∣∣∣
u1 u2 u3
v1 v2 v3
e1 e2 e3

∣∣∣∣∣∣∣∣∣∣∣∣
u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣
=

u × v
(u × v) · w

(14)

This is the cross product scaled by the (signed) volume for the parallelop-
iped spanned by the three vectors.
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2 Derivation with GA.

Regression with respect to a set of vectors can be expressed directly. For vectors
ui write B = u1 ∧ u2 · · · uk. Then for any vector we have:

x = xB
1
B

=
〈

xB
1
B

〉
1

=
〈

(x · B + x ∧ B)
1
B

〉
1

All the grade three and grade five terms are selected out by the grade one
operation, leaving just

x = (x · B) · 1
B

+ (x ∧ B) · 1
B

. (15)

This last term is the rejective component.

RejB (x) = (x ∧ B) · 1
B

=
(x ∧ B) · B†

BB† (16)

Here we see in the denominator the squared sum of determinants in the
denominator of equation 10:

BB† = ∑
i1<···<ik

(
D

ui1
···uik

i1···ik

)2

In the numerator we have the dot product of two wedge products, each
expressible as sums of determinants:

B† = (−1)k(k−1)/2 ∑
i1<···<ik

D
ui1

···uik
i1···ik ei1 ei2 · · · eik

And
x ∧ B = ∑

i1<···<ik+1

D
xui1

···uik
i1···ik+1

ei1 ei2 · · · eik+1

Dotting these is all the grade one components of the product. Performing
that calculation would likely provide an explicit confirmation of the inductive
hypothesis of equation 10. This can be observed directly for the k + 1 = n case.
That product produces a Laplace expansion sum.

(x ∧ B) · B† = Dxu1···un−1
12···n

(
e1Du1···un−1

234···n − e2Du1···un−1
134···n + e3Du1···un−1

124···n
)

(x ∧ B) · 1
B

=
Dxu1···un−1

12···n Deu1···un−1
12···n

∑i1<···<ik

(
D

ui1
···uik

i1···ik

)2 (17)
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Thus equation 10 for the k = n − 1 case is proved without induction. A
proof for the k + 1 < n case would be harder. No proof is required if one picks
the set of basis vectors ei such that ei ∧B = 0 (then the k + 1 = n result applies).
I believe that proves the general case too if one observes that a rotation to any
other basis in the span of the set of vectors only changes the sign of the each
of the determinants, and the product of the two sign changes will then have
value one.

Follow through of the details for a proof of original non GA induction hy-
pothesis is probably not worthwhile since this reciprocal frame vector problem
can be tackled with a different approach using a subspace pseudovector.

It’s notable that although this had no induction in the argument above, note
that it is fundamentally required. That is because there is an inductive proof
required to prove that the general wedge and dot product vector formulas:

x · B =
1
2
(xB − (−1)kBx)

x ∧ B =
1
2
(xB + (−1)kBx)

from the GA axioms (that’s an easier proof without the mass of indexes and
determinant products.)

3 Pseudovector from rejection.

As noted in the previous section the reciprocal frame vector uk is the vector
in the direction of uk that has no component in span u1, · · · , uk−1, normalized
such that uk · uk = 1. Explicitly, with B = u1 ∧ u2 · · · ∧ uk−1 this is:

uk =
(uk ∧ B) · B

uk · ((uk ∧ B) · B)
(18)

This is derived from equation 16, after noting that B†

BB† ∝ B, and further
scaling to produce the desired othornomal property of equation 12 that defines
the reciprocal frame vector.

3.1 back to reciprocal result.

Now, equation 18 looks considerably different from the Doran/Lasenby re-
sult. Reduction to a direct pseudovector/blade product is possible since the
dot product here can be converted to a direct product.
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(uk ∧ B) · B = (xB)︸︷︷︸
x=uk−(uk ·B)· 1

B

·B

= 〈xBB〉1

= xB2

=
((

uk − (uk · B) · 1
B

)
∧ B

)
B

= (uk ∧ B)B

Thus equation 18 is a scaled pseudovector for the subspace defined by
span ui, multiplied by a k-1 blade.

4 Components of a vector.

The delta property of equation 12 allows one to use the reciprocal frame vectors
and the basis that generated them to calculate the coordinates of the a vector
with respect to this (not necessarily orthonormal) basis.

That’s a pretty powerful result, but somewhat obscured by the Doran/Lasenby
super/sub script notation.

Suppose one writes a vector in span ui in terms of unknown coefficients

a = ∑ aiui

Dotting with uj gives:

a · uj = ∑ aiui · uj = ∑ aiδij = aj

Thus
a = ∑(a · ui)ui (19)

Similarly, writing this vectors in terms of ui we have

a = ∑ biui

Dotting with uj gives:

a · uj = ∑ biui · uj = ∑ biδij = bj

Thus
a = ∑(a · ui)ui (20)

We are used to seeing the equation for components of a vector in terms of a
basis in the following form:
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a = ∑(a · ui)ui (21)

This is true only when the basis vectors are orthonormal. Equations 19 and
20 provide the general decomposition of a vector in terms of a general linearly
independent set.

4.1 Reciprocal frame vectors by solving coordinate equation.

A more natural way to these results are to take repeated wedge products.
Given a vector decomposition in terms of a basis ui, we want to solve for ai:

a =
k

∑
i=1

aiui

The solution, from the wedge is:

a ∧ (u1 ∧ u2 · · · ǔi · · · ∧ uk = ai(−1)i−1u1 ∧ · · · ∧ uk

=⇒ ai = (−1)i−1 a ∧ (u1 ∧ u2 · · · ǔi · · · ∧ uk
u1 ∧ · · · ∧ uk

)

The complete vector in terms of components is thus:

a = ∑(−1)i−1 a ∧ (u1 ∧ u2 · · · ǔi · · · ∧ uk)
u1 ∧ · · · ∧ uk

ui (22)

We are used to seeing the coordinates expressed in terms of dot products
instead of wedge products. As in R3 where the pseudovector allows wedge
products to be expressed in terms of the dot product we can do the same for
the general case.

Writing B ∈ ∧k−1 and I ∈ ∧k we want to reduce an equation of the follow-
ing form

a ∧ B
I

=
1
I

aB + (−1)k−1Ba
2

(23)

The pseudovector either commutes or anticommutes with a vector in the
subspace depending on the grade

Ia = I · a + I ∧ a︸︷︷︸
=0

= (−1)k−1a · I

= (−1)k−1aI

Substituting back into equation 23 we have
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a ∧ B
I

= (−1)k−1
a
(

1
I B
)

+
(

1
I B
)

a

2

= (−1)k−1a ·
(

1
I

B
)

= a ·
(

B
1
I

)

With I = u1 ∧ · · · uk, and B = u1 ∧ u2 · · · ǔi · · · ∧ uk, back substitution back
into equation 22 is thus

a = ∑ a ·
(

(−1)i−1B
1
I

)
ui

The final result yields the reciprocal frame vector uk, and we see how to
arrive at this result naturally attempting to answer the question of how to find
the coordinates of a vector with respect to a (not necessarily orthonormal) basis.

a = ∑ a ·
(

(u1 ∧ u2 · · · ǔi · · · ∧ uk)
(−1)i−1

u1 ∧ · · · ∧ uk

)
︸ ︷︷ ︸

uk

ui (24)

5 Components of a bivector.

To find the coordinates of a bivector with respect to an arbitrary basis we have
a similar problem. For a vector basis ai, introduce a bivector basis ai ∧ aj, and
write

B = ∑
u<v

buvau ∧ av (25)

Wedging with ai ∧ aj will select all but the ij component. Specifically

B ∧ (a1 ∧ · · · ǎi · · · ǎj · · · ∧ ak) = bijai ∧ aj ∧ (a1 ∧ · · · ǎi · · · ǎj · · · ∧ ak)

= bij(−1)j−2+i−1(a1 ∧ · · · ∧ ak)

Thus

bij = (−1)i+j−3B ∧
(a1 ∧ · · · ǎi · · · ǎj · · · ∧ ak)

a1 ∧ · · · ∧ ak
(26)

We want to put this in dot product form like equation 24. To do so we need
a generalized grade reduction formula
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(Aa ∧ Ab) · Ac = Aa · (Ab · Ac) (27)

This holds when a + b ≤ c. Writing A = a1 ∧ · · · ǎi · · · ǎj · · · ∧ ak, and
I = a1 ∧ · · · ∧ ak, we have

(B ∧ A)
1
I

= (B ∧ A) · 1
I

= B · (A · 1
I
)

= B · (A
1
I
)

Thus the bivector in terms of it’s coordinates for this basis is:

∑
u<v

B ·
(

(a1 ∧ · · · ǎu · · · ǎv · · · ∧ ak)
(−1)u+v−2−1

a1 ∧ · · · ∧ ak

)
au ∧ av (28)

It’s easy to see how this generalizes to higher order blades since equation
27 is good for all required grades. In all cases, the form is going to be the same,
with only differences in sign and the number of omitted vectors in the A blade.

For example for a trivector

T = ∑
u<v<w

tuvwau ∧ av ∧ aw

It’s pretty straightforward to show that this can be decomposed as follows

T = ∑
u<v<w

T ·
(

(a1 ∧ · · · ǎu · · · ǎv · · · ǎw · · · ∧ ak)
(−1)u+v+w−3−2−1

a1 ∧ · · · ∧ ak

)
au ∧ av ∧ aw

(29)

5.1 Compare to GAFP.

Doran/Lasenby’s GAFP demonstrates equation 24, and with some incompre-
hendable steps skips to a generalized result of the form 1

B = ∑
i<j

B ·
(

aj ∧ ai
)

ai ∧ aj (30)

GAFP states this for general multivectors instead of bivectors, but the idea
is the same.

1In retrospect I don’t think that the in between steps had anything to do with logical sequence.
The authors wanted some of the results for subsequent stuff (like: rotor recovery) and sandwiched
it between the vector and reciprocal frame multivector results somewhat out of sequence.
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This makes intuitive sense based on the very similar vector result. This
doesn’t show that the generalized reciprocal frame k-vectors calculated in equa-
tion 28 or equation 29 can be produced simply by wedging the corresponding
individual reciprocal frame vectors.

To show that either takes algebraic identities that I do not know, or am not
thinking of as applicable. Alternately perhaps it would just take simple brute
force.

Easier is to demonstrate the validity of the final result directly. Then assum-
ing my direct calculations are correct implicitly demonstrates equivalence.

Starting with B as defined in equation 25, take dot products with aj ∧ ai.

B · (aj ∧ ai) = ∑
u<v

buv(au ∧ av) · (aj ∧ ai)

= ∑
u<v

buv

∣∣∣∣au · ai au · aj

av · ai av · aj

∣∣∣∣
= ∑

u<v
buv

∣∣∣∣δui δuj
δvi δvj

∣∣∣∣
Consider this determinant when u = i for example∣∣∣∣δui δuj

δvi δvj

∣∣∣∣ =
∣∣∣∣ 1 δij
δvi δvj

∣∣∣∣ =
∣∣∣∣ 1 0
δvi δvj

∣∣∣∣ = δvj

If any one index is common, then both must be common (ij = uv) for this
determinant to have a non-zero (ie: one) value. On the other hand, if no index
is common then all the δ’s are zero.

Like equation 12 this demonstrates an orthonormal selection behavior like
the reciprocal frame vector. It has the action:

(ai ∧ aj) · (av ∧ au) = δij,uv (31)

This means that we can write buv directly in terms of a bivector dot product

buv = B · (av ∧ au)

and thus proves equation 30. Proof of the general result also follows from
the determinant expansion of the respective blade dot products.

5.2 Direct expansion of bivector in terms of reciprocal frame
vectors

Looking at linear operators I realized that the result for bivectors above can fol-
low more easily from direct expansion of a bivector written in terms of vector
factors:
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a ∧ b = ∑(a · uiui) ∧ (b · ujuj)

= ∑
i<j

(
a · uib · uj − a · ujb · ui

)
ui ∧ uj

= ∑
i<j

∣∣∣∣a · ui a · uj
b · ui b · uj

∣∣∣∣ ui ∧ uj

When the set of vectors ui = ui are othornormal we’ve already calculated
this result when looking at the wedge product in a differential forms context:

a ∧ b = ∑
i<j

∣∣∣∣ai aj
bi bj

∣∣∣∣ ui ∧ uj (32)

For this general case for possibly non-orthonormal frames, this determinant
of dot products can be recognized as the dot product of two blades

(a ∧ b) · (uj ∧ ui) = a · (b · (uj ∧ ui))

= a · (b · ujui − b · uiuj)

= b · uja · ui − b · uia · uj

Thus we have a decomposion of the bivector directly into a sum of compo-
nents for the reciprocal frame bivectors:

a ∧ b = ∑
i<j

(
(a ∧ b) · (uj ∧ ui)

)
ui ∧ uj (33)
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