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1 Rotations strictly in a plane.

For a plane rotation, a rotation does not have to be expressed in terms of left
and right half angle rotations, as is the case with complex numbers. Starting
with this “natural” one sided rotation we will see why the half angle double
sided Rotor formula works.

1.1 Identifying a plane with a bivector. Justification.

Given a bivector B, we can say this defines the orientation of a plane (through
the origin) since for any vector in the plane we have B ∧ x = 0, or any vector
strictly normal to the plane B · x = 0.

Note that this naturally compares to the equation of a line (through the
origin) expressed in terms of a direction vector b, where b ∧ x = 0 if x lies on
the line, and b · x = 0 if x is normal to the line.

Given this it’s not unreasonable to identify the plane with its bivector. This
will be done below, and it should be clear that loose language such as “the
plane B”, should really be interpretted as “the plane with direction bivector
B”, where the direction bivector has the wedge and dot product properties
noted above.

1.2 Components of a vector in and out of a plane.

To calculate the components of a vector in and out of a plane, we can form the
product

x = xB
1
B

= x · B
1
B

+ x ∧ B
1
B

This is an orthogonal decomposition of the vector x where the first part is
the projective term onto the plane B, and the second is the rejective term, the
component not in the plane. Let’s verify this.

Write x = x‖ + x⊥, where x‖, and x⊥ are the components of x parallel and
perpenidular to the plane. Also write B = b1 ∧ b2, where bi are non-colinear
vectors in the plane B.
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If x = x‖, a vector entirely in the plane B, then one can write

x = a1b1 + a2b2

and the wedge product term is zero

x ∧ B = (a1b1 + a2b2) ∧ b1 ∧ b2

= a1(b1 ∧ b1) ∧ b2 − a2(b2 ∧ b2) ∧ b1

= 0

Thus the component parallel to the plane is composed strictly of the dot
product term

x‖ = x · B
1
B

(1)

Or for a general vector not neccessarily in the plane the component of that
vector in the plane, it’s projection onto the plane is,

ProjB(x) = x · B
1
B

=
1
|B|2 (B · x)B = (B̂ · x)B̂

Now, for a vector that lies completely perpendicular to the plane x = x⊥,
the dot product term with the plane is zero. To verify this observe

x⊥ · B = x⊥ · (b1 ∧ b2)
= (x⊥ · b1)b2 − (x⊥ · b2)b1

Each of these dot products are zero since x has no components that lie in
the plane (those components if they existed could be expressed as linear com-
binations of bi).

Thus only the component perpendicular to the plane is composed strictly
of the wedge product term

x⊥ = x ∧ B
1
B

(2)

And again for a general vector we can write it’s component that lies out of
the plane as, the rejection of the plane from the vector as,

RejB(x) = x ∧ B
1
B

= − 1
|B|2 x ∧ BB = −x ∧ B̂B̂
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2 Rotation around normal to arbitrarily oriented
plane through origin

Having established the preliminaries, we can now express a rotation around
the normal to a plane (with the plane and that normal through the origin).

Figure 1: Rotation of Vector

Such a rotation is illustrated in figure 1 preserves all components of the vec-
tor that are perpendicular to the plane, and operates only on the components
parallel to the plane.

Expressed in terms of exponentials and the projective and rejective decom-
positions above, this is

Rθ(x) = x ∧ B
1
B

+
(

x · B
1
B

)
eB̂θ

= x ∧ B
1
B

+ e−B̂θ

(
x · B

1
B

)

Where we have made explicit note that a plane rotation does not commute
with a vector in a plane (it’s reverse is required).

To demonstrate this write i = e2e1, a unit bivector in some plane with
unit vectors ei also in the plane. If a vector lies in that plane we can write the
rotation
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x eiθ = (a1e1 + a2e2) (cos θ + i sin θ)
= cos θ (a1e1 + a2e2) + (a1e1 + a2e2) (e2e1 sin θ)
= cos θ (a1e1 + a2e2) + sin θ (−a1e2 + a2e1)
= cos θ (a1e1 + a2e2)− e2e1 sin θ (a1e1 + a2e2)

= e−iθ x

Similarily for a vector that lies outside of the plane we can write

x eiθ = ( ∑
j 6=1,2

ajej)(cos θ + e2e1 sin θ)

= (cos θ + e2e1 sin θ)( ∑
j 6=1,2

ajej)

= eiθ x

The multivector for a rotation in a plane perpentidular to a vector com-
mutes with that vector. The properties of the exponential allow us to factor a
rotation

R(θ) = R(αθ)R((1− α)θ)

where α <= 1, and in particular we can set α = 1/2, and write

Rθ(x) = x ∧ B
1
B

+
(

x · B
1
B

)
eB̂θ

=
(

x ∧ B
1
B

)
e−B̂θ/2 eB̂θ/2 +

(
x · B

1
B

)
eB̂θ/2 eB̂θ/2

= e−B̂θ/2
(

x ∧ B
1
B

)
eB̂θ/2 + e−B̂θ/2

(
x · B

1
B

)
eB̂θ/2

= e−B̂θ/2 (x ∧ B + x · B)
1
B

eB̂θ/2

= e−B̂θ/2
(

xB
1
B

)
eB̂θ/2

This takes us full circle from dot and wedge products back to x, and allows
us to express the rotated vector as:

Rθ(x) = e−B̂θ/2 x eB̂θ/2 (3)

Only when the vector lies in the plane (x = x‖, or x ∧ B = 0) can be written
using the familiar left or right “full angle” rotation exponential that we are
used to from complex arithmetric:
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Rθ(x) = e−B̂θ x = x eB̂θ

3 Rotor equation in terms of normal to plane.

The rotor equation above is valid for any number of dimensions. For R3 we
can alternatively parameterize the plane in terms of a unit normal n:

B = kin

Here i is the R3 pseudoscalar e1e2e3.
Thus we can write

B̂ = in

and expressing 3 in terms of the unit normal becomes trivial

Rθ(x) = e−inθ/2 x einθ/2 (4)

Expressing this in terms of components and the unit normal is a bit harder

Rθ(x) = x ∧ B
1
B

+
(

x · B
1
B

)
eB̂θ

= x ∧ (in)
1
in

+
(

x · (in)
1
in

)
einθ

Now,

x ∧ (in) =
1
2
(xin + inx)

=
i
2
(xn + nx)

= (x · n)i

And

1
in

=
1
in

1
ni

ni

= −in
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So the rejective term becomes

x ∧ B
1
B

= x ∧ (in)
1
in

= x ∧ (in)
1
in

= (x · n)i(−i)n
= (x · n)n
= Projn(x)

Now, for the dot product with the plane term, we have

x · B = x · (in)

=
1
2
(xin− inx)

= (x ∧ n)i

Putting it all together we have

Rθ(x) = (x · n)n + (x ∧ n)n einθ (5)

In terms of explicit sine and cosine terms this is (observe that (in)2 = −1),

Rθ(x) = (x · n) n + (x ∧ n) n (cos θ + in sin θ)

Rθ(x) = (x · n) n + (x ∧ n) n cos θ + (x ∧ n)i sin θ (6)

This triplet of mutually orthogonal direction vectors, n, (x ∧ n)n, and (x ∧
n)i are illustrated in figure 2. The component of the vector in the direction
of the normal Projn(x) = x · nn is unaltered by the rotation. The rotation is
applied to the remaining component of x, Rejn(x) = (x∧ n)n, and we rotate in
the direction (x ∧ n)i

3.1 Vector rotation in terms of dot and cross products only.

Expression of this rotation formula 6 in terms of “vector” relations is also pos-
sible, by removing the wedge products and the pseudoscalar references.

First the rejective term
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Figure 2: Direction vectors associated with rotation

(x ∧ n)n = ((x× n)i)n
= ((x× n)i) · n

=
1
2
(((x× n)i)n− n((x× n)i))

=
i
2
((x× n)n− n(x× n))

= i((x× n) ∧ n)

= i2((x× n)× n)
= n× (x× n)

The next term expressed in terms of the cross product is

(x ∧ n)i = (x× n)i2

= n× x

And putting it all together we have

Rθ(x) = (x · n) n + (n× x)× n cos θ + n× x sin θ (7)
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Compare equation 7 to 6 and 5, and then back to 3.

4 Giving a meaning to the sign of the bivector.

For a rotation between two vectors in the plane containing those vectors, we
can write the rotation in terms of the exponential as either a left or right rotation
operator:

b = a eiθ = e−iθ a

b = ejθ a = a e−jθ/2

Here both i and j = −i are unit bivectors with the property i2 = j2 =
−1. Thus in order to write a rotation in exponential form a meaning must
be assigned to the sign of the unit bivector that describes the plane and the
orientation of the rotation.

Consider for example the case of a rotation by π/2. For this is the exponen-
tial is:

eiπ/2 = cos(π/2) + i sin(π/2) = i

Thus for perpendicular unit vectors u and v, if we wish i to act as a π/2
rotation left acting operator on u towards v it’s value must be:

i = u ∧ v

ui = uu ∧ v = uuv = v

For that same rotation if the bivector is employed as a right acting operator,
the reverse is required:

j = v ∧ u

ju = v ∧ u = vuu = v

In general, for any two vectors, one can find an angle θ in the range 0 ≤
θ ≤ π between those vectors. If one lets that angle define the orientation of the
rotation between the vectors, and implicitly define a sort of “imaginary axis”
for that plane, that imaginary axis will have direction

1
a

a ∧ b = b ∧ a
1
a

.

This is illustrated in figure 3.
Thus the bivector

i =
a ∧ b
|a ∧ b|

When acting as an operator to the left (ai) with a vector in the plane can be
interpreted as acting as a rotation by π/2 towards b.
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Figure 3: Orientation of unit imaginary

Similarily the bivector

j = i† = −i =
b ∧ a
|b ∧ a|

also applied to a vector in the plane produces the same rotation when acting
as an operator to the right. Thus, in general we can write a rotation by theta in
the plane containing non-colinear vectors a and b in the direction of minimal
angle from a towards b in one of the three forms:

Rθ:a→b(a) = a e
a∧b
|a∧b| θ = e

b∧a
|b∧a| θ a

Or,

Rθ:a→b(x) = e
b∧a
|b∧a| θ/2 x e

a∧b
|a∧b| θ/2

This last (writing x instead of a since it also applies to vectors that lie outside
of the a ∧ b plane), is our rotor formula 3, reexpressed in a way that removes
the sign ambiguity of the bivector i in that equation.

5 Rotation between two unit vectors.

As illustrated in figure 4, when the angle between two vectors is less than π the
fact that the sum of two arbitrarily oriented unit vectors bisects those vectors
provides a convienient way to compute the half angle rotation exponential.
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Figure 4: Sum of unit vectors bisects angle between.

Thus we can write

a + b
|a + b| = a eiθ/2 = ejθ/2 a

Where i = j† are unit bivectors of appropriate sign. Multiplication through
by a gives

eiθ/2 =
1 + ab
|a + b|

Or,

ejθ/2 =
1 + ba
|a + b|

Thus we can write the total rotation from a to b as

b = e−iθ/2 a eiθ/2 = ejθ/2 a e−jθ/2 =
(

1 + ba
|a + b|

)
a

(
1 + ab
|a + b|

)
For the case where the rotation is through an angle θ where π < θ < 2π,

again employing a left acting exponential operator we have
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a + b
|a + b| = b ei(2π−θ)/2

= b eiπ e−iθ/2

= −b e−iθ/2

Or,

e−iθ/2 = − ba + 1
|a + b|

Thus

b = e−iθ/2 a eiθ/2 =
(
− 1 + ba
|a + b|

)
a

(
− 1 + ab
|a + b|

)
(8)

Note that the two negatives cancel, giving the same result as in the θ < π
case. Thus equation 8 is valid for all vectors a 6= −b (this can be verified by
direct multiplication.)

These half angle exponentials are called rotors, writing the rotor as

R =
1 + ab
|a + b|

and the rotation in terms of rotors is:

b = R†aR

The angle associated with this rotor R is the minimal angle between the two
vectors (0 < θ < π), and is directed from a to b. Inverting the rotor will not
change the net effect of the rotation, but has the geometric meaning that the
rotation from a to b rotates in the opposite direction through the larger angle
(π < θ < 2π) between the vectors.

6 Eigenvalues, vectors and coordinate vector and
matrix of the rotation linear transformation.

Given the plane containing two orthogonal vectors u and v, we can form a unit
bivector for the plane

B = uv

A normal to this plane is n = vuI.
The rotation operator for a rotation around n in that plane (directed from u

towards v) is

Rθ(x) = evuθ/2 x euvθ/2
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To form the matrix of this linear transformation assume an orthonormal
basis σ = {ei}.

In terms of these basis vectors we can write

Rθ(ej) = e−vuθ/2 ej euvθ/2 = ∑
i

(
e−vuθ/2 ej euvθ/2

)
· eiei

Thus the coordinate vector for this basis is

[
Rθ(ej)

]
σ

=


(

e−vuθ/2 ej euvθ/2
)
· e1

...(
e−vuθ/2 ej euvθ/2

)
· en


We can use this to form the matrix for the linear operator that takes coordi-

nate vectors from the basis σ to σ:[
Rθ(x)

]
σ

=
[
Rθ

]σ
σ

[
x
]

σ

Where[
Rθ

]σ
σ

=
[[

Rθ(e1)
]

σ
. . .

[
Rθ(en)

]
σ

]
=

[(
e−vuθ/2 ej euvθ/2

)
· ei

]
ij

(9)

If one uses the plane and its normal to form an alternate orthornomal basis
α = {u, v, n}.

The transformation matrix for coordinate vectors in this basis is

[
Rθ

]α
α

=

(
u euvθ

)
· u

(
v euvθ

)
· u 0(

u euvθ
)
· v

(
v euvθ

)
· v 0

0 0 n · n

 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


This matrix has eigenvalues eiθ , e−iθ , 1, with (coordinate) eigenvectors

1√
2

 1
−i
0

 ,
1√
2

1
i
0

 ,

0
0
1


Its interesting to observe that without introducing coordinate vectors an

eigensolution is possible directly from the linear transformation itself.
The rotation linear operator has right and left eigenvalues euvθ , evuθ (re-

spectively), where the eigenvectors for these are any vectors in the plane. There’s
also a scalar eigenvalue 1 (both left and right eigenvalue), for the eigenvector
n:

Rθ(u) = evuθ x = x euvθ

Rθ(u) = evuθ x = x euvθ

Rθ(n) = n(1)
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Observe that the eigenvalues here are not all scalars, which is likely related
to the fact that the coordinate matrix was not diagonalizable with real vectors.

the matrix of the linear transformation. Given this, one can write:

[
Rθ(u) Rθ(v) Rθ(n)

]
=

[
u v n

] euvθ 0 0
0 euvθ 0
0 0 1


=

evuθ 0 0
0 evuθ 0
0 0 1

 [
u v n

]
But neither of these can be used to diagonalize the matrix of the transfor-

maion. To do that we require dot products that span the matrix product to
form the coordinate vector columns.

Observe that interestingly enough the left and right eigenvalues of the op-
erator in the plane are of complex exponential form (e±nIθ) just as the eigen-
values for coordinate vectors restricted to the plane are complex exponentials
(e±iθ).

7 matrix for rotation linear tx.

Let’s expand the terms in 9 to calculate explicitly the rotation matrix for an
arbitrary rotation. Also, as before, write n = vuI, and parameterize the Rotor
as follows:

R = enIθ/2 = cos θ/2 + nI sin θ/2 = α + Iβ

Thus the ij terms in the matrix are:

ei ·
(

e−nIθ/2 ej enIθ/2
)

= 〈ei(α− Iβ)ej(α + Iβ)〉

= 〈ei(ejα− Iβej)(α + Iβ)〉

= 〈ei

(
ejα

2 − Iα(βej − ejβ) + βejβ
)
〉

= δijα
2 + 〈ei

(
−2Iα(β ∧ ej) + βejβ

)
〉

= δijα
2 + 2αei · (β× ej) + 〈eiβejβ〉

Lets expand the last term separately:

〈eiβejβ〉 = 〈(ei · β + ei ∧ β)(ej · β + ej ∧ β)〉
= (ei · β)(ej · β) + 〈(ei ∧ β)(ej ∧ β)〉
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And once more considering first the i = j case (writing s 6= i 6= t).

〈(ei ∧ β)2〉 = (∑
k 6=i

eikβk)2

= (eisβs + eitβt)(eisβs + eitβt)

= −β2
s − β2

t − estβsβt + etsβtβs

= −β2
s − β2

t

= −β2 + β2
i

For the i 6= j term, writing i 6= j 6= k

〈(ei ∧ β)(ej ∧ β)〉 = 〈∑
s 6=i

eisβs ∑
t 6=i

eitβt〉

= 〈(eijβ j + eikβk)(ejiβi + ejkβk)〉
= βiβ j + 〈ejiβ

2
k + eikβ jβk + ekjβkβi〉

= βiβ j

Thus

〈(ei ∧ β)(ej ∧ β)〉 = δij(−β2 + β2
i ) + (1− δij)βiβ j = βiβ j − δijβ

2

And putting it all back together

ei ·
(

e−nIθ/2 ej enIθ/2
)

= δij(α2 − β2) + 2αei · (β× ej) + 2βiβ j (10)

The α and β terms can be expanded in terms of θ. we see that The δij coeffi-
cient is

α2 − β2 = 2cos2θ − 1 = cos θ.

The triple product ei · (β × ej) is zero along the diagonal where i = j since
an ej = ei cross has no ei component, so for k 6= i 6= j, the triple product term
is

2αei · (β× ej) = 2αβkei · (ek × ej)

= 2αβk sgn πikj

= 2nk cos(θ/2) sin(θ/2) sgn πikj

= nk sin θ sgn πikj
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The last term is:

2βiβ j = 2ninjsin2(θ/2) = ninj(1− cos θ)

Thus we can alternatively write 10

ei ·
(

e−nIθ/2 ej enIθ/2
)

= δij cos θ + nk sin θεikj + ninj(1− cos θ) (11)

This is enough to easily and explicitly write out the complete rotation ma-
trix for a rotation about unit vector n = (n1, n2, n3): (with basis σ = {ei}):

[Rθ ]σσ =

 cos θ(1− n2
1) + n2

1 n1n2(1− cos θ)− n3 sin θ n1n3(1− cos θ) + n2 sin θ
n1n2(1− cos θ) + n3 sin θ cos θ(1− n2

2) + n2
2 n2n3(1− cos θ)− n1 sin θ

n1n3(1− cos θ)− n2 sin θ n2n3(1− cos θ) + n1 sin θ cos θ(1− n2
3) + n2

3


Note also that the ni terms are the direction cosines of the unit normal for

the rotation, so all the terms above are really strictly sums of sine and cosine
products, so we have the rotation matrix completely described in terms of four
angles. Also observe how much additional complexity we have to express a
rotation in terms of the matrix. This representation also does not work for
plane rotations, just vectors (whereas that’s not the case for the rotor form).

It’s actually somewhat simplier looking to leave things in terms of the α,
and β parameters. We can rewrite 10 as:

ei ·
(

e−nIθ/2 ej enIθ/2
)

= δij(2α2 − 1) + 2αβkεikj + 2βiβ j (12)

and the rotation matrix:

[Rθ ]σσ = 2

α2 − 1
2 + β2

1 β1β2 − β3α β1β3 + β2α

β1β2 + β3α α2 − 1
2 + β2

2 β2β3 − β1α

β1β3 − β2α β2β3 + β1α α2 − 1
2 + β2

3


Not really that much simpler, but a bit. The tradeoff is that the similarity to

the standard 2x2 rotation matrix is not obvious.
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