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1 Motivation.

The Bohr model is taught as early as high school chemistry when the various
orbitals are discussed (or maybe it was high school physics). I recall that the
first time I saw this I didn’t see where all the ideas came from. With a bit more
math under my belt now, reexamine these ideas as a lead up to the proper wave
mechanics.

2 Calculations.

2.1 Equations of motion.

A prerequisite to discussing electron orbits is first setting up the equations of
motion for the two charged particles (ie: the proton and electron).

With the proton position at rp, and the electron at re, we have two equations,
one for the force on the proton from the electron and the other for the force on
the proton from the electron. These are respectively
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1
4πε0

e2 re − rp∣∣re − rp
∣∣3 = mp

d2rp

dt2 (1)

− 1
4πε0

e2 re − rp∣∣re − rp
∣∣3 = me

d2re

dt2 (2)

In liew of a picture, setting rp = 0 works to check signs, leaving an inwards
force on the electron as desired.

As usual for a two body problem, use of the difference vector and center of
mass vector is desirable. That is

x = re − rp

M = me + mp

R =
1
M

(mere + mprp)

Solving for rp and re in terms of R and x we have

re =
mp

M
x + R

rp =
−me

M
x + R

Substitution back into 1 we have

1
4πε0

e2 x

|x|3
= mp

d2

dt2

(
−me

M
x + R

)
− 1

4πε0
e2 x

|x|3
= me

d2

dt2

(mp

M
x + R

)
,

and sums and (scaled) differences of that give us our reduced mass equa-
tion and constant center-of-mass velocity equation

d2x
dt2 = − 1

4πε0
e2 x

|x|3

(
1

me
+

1
mp

)
(3)

d2R
dt2 = 0 (4)

writing 1/µ = 1/me + 1/mp, and k = e2/4πε0, our difference vector equa-
tion is thus

µ
d2x
dt2 = −k

x

|x|3
(5)
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2.2 Circular solution.

The Bohr model postulates that electron orbits are circular. It’s easy enough to
verify that a circular orbit in the center of mass frame is a solution to equation
5. Write the path in terms of the unit bivector for the plane of rotation i and an
initial vector position x0

x = x0eiωt (6)

For constant i and ω, we have

µx0(iω)2eiωt = −k
x0

|x0|3
eiωt

This provides the angular velocity in terms of the reduced mass of the sys-
tem and the charge constants

ω2 =
k

µ|x0|3
=

e2

4πε0µ|x0|3
. (7)

Although not relavant to the quantum theme, it’s hard not to call out the
observation that this is a Kepler’s law like relation for the period of the circular
orbit given the radial distance from the center of mass

T2 =
8π2ε0µ

e2 |x0|3

Kepler’s law also holds for elliptical orbits, but this takes more work to
show.

2.3 Angular momentum conservation.

Now, the next step in the Bohr argument was that the angular momentum,
a conserved quantity is also quantized. To give real meaning to the conser-
vation statement we need the equivalent Lagrangian formulation of 5. Anti-
differentiation gives

∇v

(
1
2

µv2
)

= kx̂∂x
1
x

= −∇x

(
−k

1
|x|

)
︸ ︷︷ ︸

=φ
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So, our Lagrangian is

L = K − φ =
1
2

µv2 + k
1
|x|

The essence of the conservation argument, an application of Noether’s the-
orem, is that a rotational transformation of the Lagrangian leaves this energy
relationship unchanged. Repeating the angular momentum example from [Joot()]
(which was done for the more general case of any radial potential), we write B̂
for the unit bivector associated with a rotational plane. The position vector is
transformed by rotation in this plane as follows

x → x′

x′ = RxR†

R = exp B̂θ/2

The magnitude of the position vector is rotation invariant

(x′)2 = RxR†RxR† = x2,

as is our the square of the transformed velocity. The transformed velocity
is

dx′

dt
= ṘxR + RẋR† + RxṘ†

but with θ̇ = 0, Ṙ = 0 its square is just

(v′)2 = RvR†Rv̇R† = v2.

We therefore have a Lagrangian that is invarient under this rotational trans-
formation

L → L′ = L,

and by Noether’s theorem (essentially application of the chain rule), we
have

dL′
dθ

=
d
dt

(
dx′

dθ
· ∇v′L

)
=

d
dt

(
(B̂ · x′) · µv′

)
.
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But dL′/dθ = 0, so we have for any B̂

(B̂ · x′) · (µv′) = B̂ · (x′ ∧ (µv′)) = constant

Dropping primes this is

L = x ∧ (µv) = constant,

a constant bivector for the conserved center of mass (reduced-mass) angular
momentum associated with the Lagrangian of this system.

2.4 Quantized angular momentum for circular solution.

In terms of the circular solution of equation 6 the angular momentum bivector
is

L = x ∧ (µv) =
〈

x0eiωtµx0iωeiωt
〉

2

=
〈

e−iωtx0µx0ωeiωti
〉

2

= (x0)2µωi

= ie

√
µ|x0|
4πε0

Now if this angular momentum is quantized with quantum magnitude l
we have we have for the bivector angular momentum the values

L = inl = ie

√
µ|x0|
4πε0

(8)

Which with l = h̄ (where experiment in the form of the spectral hydrogen
line values is required to fix this constant and relate it to Plank’s black body
constant) is the momentum equation in terms of the Bohr radius x0 at each
energy level. Writing that radius rn = |x0| explicitly as a function of n, we have

rn =
4πε0

µ

(
nh̄
e

)2

2.4.1 Velocity.

One of the assumptions of this treatment is a |ve| << c requirement so that
Coulombs law is valid (ie: slow enough that all the other Maxwell’s equations
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can be neglected). Let’s evaluate the velocity numerically at the some of the
quantization levels and see how this compares to the speed of light.

First we need an expression for the velocity itself. This is

v2 = (x0iωeiωt)2

=
e2

4πε0µrn

=
e4

(4πε0)2(nh̄)2 .

For

vn =
e2

4πε0nh̄
= 2.1× 106m/s

This is the 1/137 of the speed of light value that one sees googling elec-
tron speed in hydrogen, and only decreases with quantum number so the non-
relativistic speed approximation holds (γ = 1.00002663). This speed is still
pretty zippy, even if it isn’t relativistic, so it isn’t unreasonable to attempt to
repeat this treatment trying to incorporate the remainder of Maxwell’s equa-
tions.

Interestingly the velocity is not a function of the reduced mass at all, but
just the charge and quantum numbers. One also gets a good hint at why the
Bohr theory breaks down for larger atoms. An electron in circular orbit around
an ion of Gold would have a velocity of 79/137 the speed of light!
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