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1 Notation.

Please see 6 below for a summary of prerequisite notation used here.

2 Motivation.

In [Joot(a)], a solution of the first order Maxwell equation

∇F =
J

ε0c
(1)

was found to be
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F(x, t) =
1

(2π)3

∫
e−ickt

(
F(u, 0) +

1
ε0

∫ t

τ=−∞
eickτγ0 J(u, τ)dτ

)
eik·(x−u)d3ud3k

(2)

This doesn’t have the spacetime uniformity that is expected for a solution
of a Lorentz invariant equation.

Similarily, in [Joot(b)] solutions of the second order Maxwell equation in
the Lorentz gauge ∇ · A = 0

F = ∇∧ A

∇2 A = J/ε0c

were found to be

Aµ(x) =
1

ε0c

∫
Jµ(x′)G(x− x′)d4x′ (3)

G(x) =
u(x · γ0)
(2π)3

∫
sin(|k|x · γ0) exp (−i(kγ0) · x)

d3k
|k| (4)

Here our convolution kernel G also doesn’t exhibit a uniform four vector
form that one could logically expect.

In these notes an attempt to rework these problems using a 4D spacetime
Fourier transform will be made.

3 4D Fourier transform.

As before we want a multivector friendly Fourier transform pair, and choose
the following

ψ̂(k) =
1

(
√

2π)4

∫ ∞

−∞
ψ(x) exp (−ik · x) d4x (5)

ψ(x) = PV
1

(
√

2π)4

∫ ∞

−∞
ψ̂(k) exp (ik · x) d4k (6)

Here we use i = γ0γ1γ2γ3 as our pseudoscalar, and have to therefore be
careful of order of operations since this does not neccessarily commute with
multivector ψ or ψ̂ functions.

For our dot product and vectors, with summation over matched upstairs
downstairs indexes implied, we write

x = xµγµ = xµγµ

k = kµγµ = kµγµ

x · k = xµkµ = xµkµ
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Finally our differential volume elements are defined to be

d4x = dx0dx1dx2dx3

d4k = dk0dk1dk2dk3

Note the opposite pairing of upstairs and downstairs indexes in the coordi-
nates.

4 Potential equations.

4.1 Inhomogeneous case.

First for the attack is the Maxwell potential equations. As well as using a 4D
transform, having learned how to do Fourier transformations of multivectors,
we will attack this one in vector form as well. Our equation to invert is

∇2 A = J/ε0c

There is nothing special to do for the transformation of the current term,
but the left hand side will require two integration parts

F (∇2 A) =
1

(2π)2

∫ ∞

−∞

((
∂00 −∑

m
∂mm

)
A

)
e−ikµxµ

d4x

=
1

(2π)2

∫ ∞

−∞
A

(
(−ik0)2 −∑

m
(−ikm)2

)
e−ikµxµ

d4x

As usual it is required that A and ∂µ A vanish at infinity. Now for the scalar
in the interior we have

(−ik0)2 −∑
m

(−ikm)2 = −(k0)2 + ∑
m

(km)2

But this is just the (negation) of the square of our wave number vector

k2 = kµγµ · kνγν

= kµkνγµ · γν

= k0k0γ0 · γ0 −∑
a,b

kakbγa · γb

= (k0)2 −∑
a

(ka)2
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Putting things back together we have for our potential vector in the wave
number domain

Â =
Ĵ

−k2ε0c

Inverting, and substitution for Ĵ gives us our spacetime domain potential
vector in one fell swoop

A(x) =
1

(
√

2π)4

∫ ∞

−∞

(
1

−k2ε0c
1

(
√

2π)4

∫ ∞

−∞
J(x′)e−ik·x′d4x′

)
eik·xd4k

=
1

(2π)4

∫ ∞

−∞
J(x′)

1
−k2ε0c

eik·(x−x′)d4kd4x′

This allows us to write this entire specific solution to the forced wave equa-
tion problem as a convolution integral

A(x) =
1

ε0c

∫ ∞

−∞
J(x′)G(x− x′)d4x′ (7)

G(x) =
−1

(2π)4

∫ ∞

−∞

eik·x

k2 d4k (8)

Pretty slick looking, but actually also problematic if one thinks about it.
Since k2 is null in some cases G(x) may blow up in some conditions. My as-
sumption however, is that a well defined meaning can be associated with this
integral, I just do not know what it is yet. A way to define this more exactly
may require picking a more specific orthonormal basis once the exact character
of J is known.

FIXME: In [Joot(c)] I worked through how to evaluate such an integral (ex-
panding on a too brief treatment found in [Byron and Fuller(1992)]). To apply
such a technique here, where our Green’s function has precisely the same form
as the Green’s function for the Poisson’s equation, a way to do the equivalent
of a spherical polar parameterization will be required. How would that be
done in 4D? Have seen such treatments in [Flanders(1989)] for hypervolume
and surface integration, but they didn’t make much sense then. Perhaps they
would now?

4.2 The homogeneous case.

The missing element here is the addition of any allowed homogeneous solu-
tions to the wave equation. The form of such solutions cannot be obtained
with the 4D transform since that produces
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−k2 Â = 0

and no meaningful inversion of that is possible.
For the homogeneous problem we are forced to reexpress the spacetime

Laplacian with an explicit bias towards either time or a specific direction in
space, and attack with a Fourier transform on the remaining coordinates. This
has been done previously, but we can revisit this using our new vector trans-
form.

Now we switch to a spatial Fourier transform

ψ̂(k, t) =
1

(
√

2π)3

∫ ∞

−∞
ψ(x, t) exp (−ik · x) d3x (9)

ψ(x, t) = PV
1

(
√

2π)3

∫ ∞

−∞
ψ̂(k, t) exp (ik · x) d3k (10)

Using a spatial transform we have

F ((∂00 −∑
m

∂mm)A) = ∂00 Â−∑
m

Â(−ikm)2

Carefully keeping the pseudoscalar factors all on the right of our vector as
the integration by parts was performed doesn’t make a difference since we just
end up with a scalar in the end. Our equation in the wave number domain is
then just

∂tt Â(k, t) + (c2k2)Â(k, t) = 0

with exponential solutions

Â(k, t) = C(k) exp(±ic|k|t)

In particular, for t = 0 we have

Â(k, 0) = C(k)

Reassembling then gives us our homogeneous solution

A(x, t) =
1

(
√

2π)3

∫ ∞

−∞

(
1

(
√

2π)3

∫ ∞

−∞
A(x′, 0)e−ik·x′d3x′

)
e±ic|k|teik·xd3k

This is
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A(x, t) =
∫ ∞

−∞
A(x′, 0)G(x− x′)d3x′ (11)

G(x) =
1

(2π)3

∫ ∞

−∞
exp (ik · x± ic|k|t) d3k (12)

Here also we have to be careful to keep the Green’s function on the right
hand side of A since they won’t generally commute.

4.3 Summarizing.

Assembling both the homogeneous and inhomogeneous parts for a complete
solution we have for the Maxwell four vector potential

A(x) =
∫ ∞

−∞

(
A(x′, 0)H(x− x′) +

1
ε0c

∫ ∞

−∞
J(x′)G(x− x′)dx0

)
dx1dx2dx3

(13)

H(x) =
1

(2π)3

∫ ∞

−∞
exp (ik · x± ic|k|t) d3k (14)

G(x) =
−1

(2π)4

∫ ∞

−∞

eik·x

k2 d4k (15)

Here for convienence both four vectors and spatial vectors were used with

x = xµγµ

x = xmσm = x ∧ γ0

As expected, operating where possible in a Four vector context does pro-
duce a simpler convolution kernel for the vector potential.

5 First order Maxwell equation treatment.

Now we want to Fourier transform Maxwell’s equation directly. That is

F (∇F = J/ε0c)

For the LHS we have
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F (∇F) = F (γµ∂µF)

= γµ 1
(2π)2

∫ ∞

−∞
(∂µF)e−ik·xd4x

= −γµ 1
(2π)2

∫ ∞

−∞
F∂µ(e−ikσxσ

)d4x

= −γµ 1
(2π)2

∫ ∞

−∞
F(−ikµ)e−ik·xd4x

= −iγµkµ
1

(2π)2

∫ ∞

−∞
Fe−ik·xd4x

= −ikF̂

This gives us

−ikF̂ = Ĵ/ε0c

So to solve the forced Maxwell equation we have only to inverse transform
the following

F̂ =
1

−ikε0c
Ĵ

This is

F =
1

(
√

2π)4

∫ ∞

−∞

1
−ikε0c

(
1

(
√

2π)4

∫ ∞

−∞
J(x′)e−ik·x′d4x′

)
eik·xd4k

Adding to this a solution to the homogeneous equation we now have a
complete solution in terms of the given four current density and an initial field
wave packet

F =
1

(2π)3

∫
e−icktF(x′, 0)eik·(x−x′)d3x′d3k +

1
(2π)4ε0c

∫ i
k

J(x′)eik·(x−x′)d4kd4x′

Observe that we can’t make a single sided Green’s function to convolve J
with since the vectors k and J may not commute.

As expected working in a relativistic context for our inherently relativistic
equation turns out to be much simpler and produce a simpler result. As before
trying to actually evaluate these integrals is a different story.
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6 Appendix. Summary of Notation used.

Here is a summary of the notation, following largely the conventions from [Do-
ran and Lasenby(2003)]. Greek letters range over all indexes and english in-
dexes range over 1, 2, 3. Bold vectors are spatial enties and non-bold is used
for four vectors and scalars. Summation convention is in effect unless other-
wise noted, with implied summation over all sets of matched upper and lower
indexes.
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γµ Four vector basis vector)
(γµ · γν = ±δµ

ν)
(γ0)

2(γk)
2 = −1 Minkowski metric

σk = σk = γk ∧ γ0 Spatial basis bivector. (σk · σj = δkj)
i = γ0 ∧ γ1 ∧ γ2 ∧ γ3 Four-vector pseudoscalar
γµ · γν = δµ

ν Reciprocal basis vectors
xµ = x · γµ Vector coordinate
xµ = x · γµ Coordinate for reciprocal basis
x = ∑ γµxµ Four vector in terms of coordinates

= ∑ γµxµ

E = ∑ Ekσk Electric field spatial vector
B = ∑ Bkσk Magnetic field spatial vector
J = ∑ γµ Jµ Current density four vector.

= ∑ γµ Jµ

F = E + icB Faraday bivector
= Fµνγµ ∧ γν in terms of Faraday tensor

x0 = x · γ0 Time coordinate (length dim.)
= ct

x = x ∧ γ0 Spatial vector
= xkσk

J0 = J · γ0 Charge density.
= cρ (current density dimensions.)

J = J ∧ γ0 Current density spatial vector
= ∑ Jkσk

∂µ = ∂/∂xµ Index up partial.
∂µ = ∂/∂xµ Index down partial.
∂µν = ∂/∂xµ∂/∂xν Index up partial.
∇ = ∑ γµ∂/∂xµ Spacetime gradient

= ∑ γµ∂µ

= ∑ γµ∂/∂xµ

= ∑ γµ∂µ

∇ = ∑ σk∂k Spatial gradient
PV
∫ ∞
−∞ = limR→∞

∫ R
R Integral Principle value

Â(k) = F (A(x)) Fourier transform of A
A(x) = F−1(A(k)) Inverse Fourier transform
∇2 A = (∇ · ∇)A Four Laplacian.

= (∂00 −∑k ∂kk)A
x2 = x · x Four vector square.

= xµxµ

x2 = x · x Spatial vector square.
= ∑3

k=1(xk)2

= |x|2
d4x = dx0dx1dx2dx3 Four volume element.
d3x = dx1dx2dx3 Spatial volume element.
exp(ikφ) = cos(|k|φ) + ik

|ik| sin(|k|φ) bivector exponential.
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While many things could be formulated in a metric signature indepen-
dent fashion, no effort to do so here has been made. Assume a time positive
(+,−,−,−) metric signature. Specifically, that is (γ0)2 = 1, and (γk)2 = −1.

The PV notation used somewhat loosely here is taken from [Le Page and
LePage(1980)] where the author uses it in his Riemann integral proof of the
inverse Fourier integral.
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