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1 Motivation.

Despite a lot of recent study of electrodynamics, faced with a simple electrical
problem:

“What capacity generator would be required for an arc welder on a 30 Amp
breaker using a 220 volt circuit”.

I couldn’t think of how to answer this off the top of my head. Back in school
without hesitation I would have been able to plug into P = IV to get a capacity
estimation for the generator.

Having forgotten the formula, let’s see how we get that P = IV relationship
from Maxwell’s equations.
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Having just derived the Poynting energy momentum density relationship from
Maxwell’s equations, let that be the starting point

d
dt

( ε0

2

(
E2 + c2B2

))
= − 1

µ0
(E× B)− E · j

The left hand side is the energy density time variation, which is power per
unit volume, so we can integrate this over a volume to determine the power
associated with a change in the field.

P = −
∫

dV
(

1
µ0

(E× B) + E · j
)

As a reminder, let’s write the magnetic and electric fields in terms of poten-
tials.

In terms of the “native” four potential our field is
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F = E + icB
= ∇∧ A

= γ0γk∂0 Ak + γjγ0∂j A0 + γm ∧ γn∂m An

The electric field is

E = ∑
k

(∇∧ A) · (γ0γk)γkγ0

From this, with φ = A0, and A = σk Ak we have

E = −1
c

∂A
∂t

−∇φ

iB = ∇ ∧A

Now, the arc welder is (I think) a DC device, and to get a rough idea of what
it requires lets just assume that its a rectifier that outputs RMS DC. So if we
make this simplification, and assume that we have a purely resistive load (ie:
no inductance and therefore no magnetic fields) and a DC supply and constant
current, then we eliminate the vector potential terms.

This wipes out the B and the Poynting vector, and leaves our electric field
specified in terms of the potential difference accross the load E = −∇φ.

That is

P =
∫

dV(∇φ) · j

Suppose we are integrating over the length of a uniformly resistive load
with some fixed cross sectional area. jdV is then the magnitude of the current
directed along the wire for its length. This basically leaves us with a line inte-
gral over the length of the wire that we are measuring our potential drop over
so we are left with just

P = (δφ)I

This δφ is just our voltage drop V, and this gives us the desired P = IV
equation. Now, I also recall from school now that I think about it that P = IV
also applied to inductive loads, but it required that I and V be phasors that rep-
resented the sinusodal currents and sources. A good followup exersize would
be to show from Maxwell’s equations that this is in fact valid. Eventually I’ll
know the origin of all the formulas from my old engineering courses.
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