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1. Motivation

How to obtain solutions to Maxwell’s equations in vacuum is well known. The aim here is
to explore the same problem starting with the Geometric Algebra (GA) formalism ([1]) of the
Maxwell equation.

∇F = J/ε0c (1)
F = ∇∧ A = E + icB (2)

A Fourier transformation attack on the equation should be possible, so let’s see what falls out
doing so.

1.1. Fourier problem.

Picking an observer bias for the gradient by premultiplying with γ0 the vacuum equation for
light can therefore also be written as
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0 = γ0∇F

= γ0(γ0∂0 + γk∂k)F

= (∂0 − γkγ0∂k)F

= (∂0 + σk∂k)F

=
(

1
c

∂t + ∇
)

F

A Fourier transformation of this equation produces

0 =
1
c

∂F
∂t

(k, t) +
1

(
√

2π)3

∫
σm∂mF(x, t)e−ik·xd3x

and with a single integration by parts one has

0 =
1
c

∂F
∂t

(k, t)− 1
(
√

2π)3

∫
σmF(x, t)(−ikm)e−ik·xd3x

=
1
c

∂F
∂t

(k, t) +
1

(
√

2π)3

∫
kF(x, t)ie−ik·xd3x

=
1
c

∂F
∂t

(k, t) + ikF̂(k, t)

The flexibility to employ the pseudoscalar as the imaginary i = γ0γ1γ2γ3 has been employed
above, so it should be noted that pseudoscalar commutation with Dirac bivectors was implied
above, but also that we do not have the flexibility to commute k with F.

Having done this, the problem to solve is now Maxwell’s vacuum equation in the frequency
domain

∂F
∂t

(k, t) = −ickF̂(k, t)

Introducing an angular frequency (spatial) bivector, and its vector dual

Ω = −ick (3)
ω = ck (4)

This becomes

F̂′ = ΩF (5)

With solution
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F̂ = eΩt F̂(k, 0) (6)

Differentiation with respect to time verifies that the ordering of the terms is correct and this
does in fact solve (5). This is something we have to be careful of due to the possibility of non-
commuting variables.

Back substitution into the inverse transform now supplies the time evolution of the field given
the initial time specification

F(x, t) =
1

(
√

2π)3

∫
eΩt F̂(k, 0)eik·xd3k

=
1

(2π)3

∫
eΩt

(∫
F(x′, 0)e−ik·x′d3x′

)
eik·xd3k

Observe that Pseudoscalar exponentials commute with the field because i commutes with spa-
tial vectors and itself

Feiθ = (E + icB)(C + iS)
= C(E + icB) + S(E + icB)i
= C(E + icB) + Si(E + icB)

= eiθ F

This allows the specifics of the initial time conditions to be suppressed

F(x, t) =
∫

d3keΩteik·x
∫ 1

(2π)3 F(x′, 0)e−ik·x′d3x′ (7)

The interior integral has the job of a weighting function over plane wave solutions, and this
can be made explicit writing

D(k) =
1

(2π)3

∫
F(x′, 0)e−ik·x′d3x′ (8)

F(x, t) =
∫

eΩteik·xD(k)d3k (9)

Many assumptions have been made here, not the least of which was a requirement for the
Fourier transform of a bivector valued function to be meaningful, and have an inverse. It is there-
fore reasonable to verify that this weighted plane wave result is in fact a solution to the original
Maxwell vacuum equation. Differentiation verifies that things are okay so far

γ0∇F(x, t) =
(

1
c

∂t + ∇
) ∫

eΩteik·xD(k)d3k

=
∫ (

1
c

ΩeΩt + σmeΩtikm

)
eik·xD(k)d3k

=
∫ (

1
c
(−ikc) + ik

)
eΩteik·xD(k)d3k

= 0 �
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1.2. Discretizing and grade restrictions.

The fact that it the integral has zero gradient does not mean that it is a bivector, so there must
also be at least also be restrictions on the grades of D(k).

To simplify discussion, let’s discretize the integral writing

D(k′) = Dkδ3(k− k′)

So we have

F(x, t) =
∫

eΩteik′·xD(k′)d3k′

=
∫

eΩteik′·xDkδ3(k− k′)d3k′

This produces something planewave-ish

F(x, t) = eΩteik·xDk (10)

Observe that at t = 0 we have

F(x, 0) = eik·xDk

= (cos(k · x) + i sin(k · x))Dk

There is therefore a requirement for Dk to be either a spatial vector or its dual, a spatial bivec-
tor. For example taking Dk to be a spatial vector we can then identify the electric and magnetic
components of the field

E(x, 0) = cos(k · x)Dk

cB(x, 0) = sin(k · x)Dk

and if Dk is taken to be a spatial bivector, this pair of identifications would be inverted.
Considering (10) at x = 0, we have

F(0, t) = eΩtDk

= (cos(|Ω|t) + Ω̂ sin(|Ω|t))Dk

= (cos(|Ω|t)− ik̂ sin(|Ω|t))Dk

If Dk is first assumed to be a spatial vector, then F would have a pseudoscalar component if
Dk has any component parallel to k̂.
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Dk ∈{σm} =⇒ Dk · k̂ = 0 (11)

Dk ∈{σa ∧ σb} =⇒ Dk · (ik̂) = 0 (12)

Since we can convert between the spatial vector and bivector cases using a duality transforma-
tion, there may not appear to be any loss of generality imposing a spatial vector restriction on Dk,
at least in this current free case. However, an attempt to do so leads to trouble. In particular, this
leads to collinear electric and magnetic fields, and thus the odd seeming condition where the field
energy density is non-zero but the field momentum density (Poynting vector P ∝ E × B) is zero.
In retrospect being forced down the path of including both grades is not unreasonable, especially
since this gives Dk precisely the form of the field itself F = E + icB.

2. Electric and Magnetic field split.

With the basic form of the Maxwell vacuum solution determined, we are now ready to start
extracting information from the solution and making comparisons with the more familiar vector
form. To start doing the phasor form of the fundamental solution can be expanded explicitly in
terms of two arbitrary spatial parametrization vectors Ek and Bk.

F = e−iωteik·x(Ek + icBk) (13)

Whether these parametrization vectors have any relation to electric and magnetic fields respec-
tively will have to be determined, but making that assumption for now to label these uniquely
doesn’t seem unreasonable.

From (13) we can compute the electric and magnetic fields by the conjugate relations (25). Our
conjugate is

F† = (Ek − icBk)e−ik·xeiωt

= e−iωte−ik·x(Ek − icBk)

Thus for the electric field

F + F† = e−iωt
(

eik·x(Ek + icBk) + e−ik·x(Ek − icBk)
)

= e−iωt (2 cos(k · x)Ek + ic(2i) sin(k · x)Bk)
= 2 cos(ωt) (cos(k · x)Ek − c sin(k · x)Bk)

+ 2 sin(ωt)k̂× (cos(k · x)Ek − c sin(k · x)Bk)

So for the electric field E = 1
2 (F + F†) we have

E =
(

cos(ωt) + sin(ωt)k̂×
)

(cos(k · x)Ek − c sin(k · x)Bk) (14)
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Similarly for the magnetic field we have

F − F† = e−iωt
(

eik·x(Ek + icBk)− e−ik·x(Ek − icBk)
)

= e−iωt (2i sin(k · x)Ek + 2ic cos(k · x)Bk)

This gives cB = 1
2i (F − F†) we have

cB =
(

cos(ωt) + sin(ωt)k̂×
)

(sin(k · x)Ek + c cos(k · x)Bk) (15)

Observe that the action of the time dependent phasor has been expressed, somewhat abusively
and sneakily, in a scalar plus cross product operator form. The end result, when applied to a vector
perpendicular to k̂, is still a vector

e−iωta =
(

cos(ωt) + sin(ωt)k̂×
)

a

Also observe that the Hermitian conjugate split of the total field bivector F produces vectors E
and B, not phasors. There is no further need to take real or imaginary parts nor treat the phasor
(13) as an artificial mathematical construct used for convenience only.

2.1. Polar Form.

Suppose an explicit polar form is introduced for the plane vectors Ek, and Bk. Let

Ek = EÊk

Bk = BÊkeik̂θ

Then for the field we have

F = e−iωteik·x(E + icBe−ik̂θ)Êk (16)

For the conjugate

F† = Êk(E− icBeik̂θ)e−ik·xeiωt

= e−iωte−ik·x(E− icBe−ik̂θ)Êk

So, in the polar form we have for the electric, and magnetic fields

E = e−iωt(E cos(k · x)− cB sin(k · x)e−ik̂θ)Êk (17)

cB = e−iωt(E sin(k · x) + cB cos(k · x)e−ik̂θ)Êk (18)

Observe when θ is an integer multiple of π, E and B are colinear, having the zero Poynting
vector mentioned previously. Now, for arbitrary θ it does not appear that there is any inherent
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perpendicularity between the electric and magnetic fields. It is common to read of light being the
propagation of perpendicular fields, both perpendicular to the propagation direction. We have
perpendicularity to the propagation direction by virtue of requiring that the field be a (Dirac)
bivector, but it does not look like the solution requires any inherent perpendicularity for the field
components. It appears that a normal triplet of field vectors and propagation directions must
actually be a special case. Intuition says that this freedom to pick different magnitude or angle
between Ek and Bk in the plane perpendicular to the transmission direction may correspond to
different mixes of linear, circular, and elliptic polarization, but this has to be confirmed.

Working towards confirming (or disproving) this intuition, lets find the constraints on the
fields that lead to normal electric and magnetic fields. This should follow by taking dot products

E · Bc =
〈

e−iωt(E cos(k · x)− cB sin(k · x)e−ik̂θ)ÊkÊkeiωt(E sin(k · x) + cB cos(k · x)eik̂θ)
〉

=
〈
(E cos(k · x)− cB sin(k · x)e−ik̂θ)(E sin(k · x) + cB cos(k · x)eik̂θ)

〉
= (E2 − c2B2) cos(k · x) sin(k · x) + cEB

〈
cos2(k · x)eik̂θ − sin2(k · x)e−ik̂θ

〉
= (E2 − c2B2) cos(k · x) sin(k · x) + cEB cos(θ)(cos2(k · x)− sin2(k · x))

= (E2 − c2B2) cos(k · x) sin(k · x) + cEB cos(θ)(cos2(k · x)− sin2(k · x))

=
1
2
(E2 − c2B2) sin(2k · x) + cEB cos(θ) cos(2k · x)

The only way this can be zero for any x is if the left and right terms are separately zero, which
means

|Ek| = c|Bk|

θ =
π

2
+ nπ

This simplifies the phasor considerably, leaving

E + icBe−ik̂θ = E(1 + i(∓ik̂))

= E(1± k̂)

So the field is just

F = e−iωteik·x(1± k̂)Ek (19)

Using this, and some regrouping, a calculation of the field components yields

E = eik̂(±k·x−ωt)Ek (20)

cB = ±eik̂(±k·x−ωt)ikEk (21)
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Observe that ik rotates any vector in the plane perpendicular to k̂ by 90 degrees, so we have
here cB = ±k̂× E, the coupling constraint on the fields for linearly polarized plane waves. With-
out the constraint E · B = 0, it appears that we cannot have such a simple coupling between the
field components.

3. Energy and momentum for the phasor

To calculate the field energy density we can work with the two fields of equations (17), or
work with the phasor (13) directly. From the phasor and the energy-momentum four vector (28)
we have for the energy density

U = T(γ0) · γ0

=
−ε0

2
〈Fγ0Fγ0〉

=
−ε0

2

〈
e−iωteik·x(Ek + icBk)γ0e−iωteik·x(Ek + icBk)γ0

〉
=
−ε0

2

〈
e−iωteik·x(Ek + icBk)(γ0)2e−iωte−ik·x(−Ek + icBk)

〉
=
−ε0

2

〈
e−iωt(Ek + icBk)e−iωt(−Ek + icBk)

〉
=

ε0

2
〈(Ek + icBk)(Ek − icBk)〉

=
ε0

2
(
(Ek)2 + c2(Bk)2) + cε0〈iEk ∧ Bk〉

=
ε0

2
(
(Ek)2 + c2(Bk)2) + cε0〈Bk × Ek〉

Quite anticlimactically we have for the energy the sum of the energies associated with the
parametrization constants, lending some justification for the initial choice to label these as electric
and magnetic fields

U =
ε0

2
(
(Ek)2 + c2(Bk)2) (22)

For the momentum, we want the difference of FF†, and F†F

FF† = e−iωteik·x(Ek + icBk)(Ek − icBk)e−ik·xeiωt

= (Ek + icBk)(Ek − icBk)

= (Ek)2 + c2(Bk)2 − 2cBk × Ek

FF† = (Ek − icBk)e−ik·xeiωte−iωteik·x(Ek + icBk)
= (Ek − icBk)(Ek + icBk)

= (Ek)2 + c2(Bk)2 + 2cBk × Ek
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So we have for the momentum, also anticlimactically

P =
1
c

T(γ0) ∧ γ0 = ε0Ek × Bk (23)

4. Followup.

Well, that’s enough for one day. Understanding how to express circular and eliptic polariza-
tion is one of the logical next steps. I seem to recall from Susskind’s QM lectures that these can be
considered superpositions of linearly polarized waves, so examining a sum of two co-directionally
propagating fields would seem to be in order. Also there ought to be a more natural way to ex-
press the perpendicularity requirement for the field and the propagation direction. The fact that
the field components and propagation direction when all multiplied is proportional to the spatial
pseudoscalar can probably be utilized to tidy this up and also produce a form that allows for sim-
pler summation of fields in different propagation directions. It also seems reasonable to consider
a planar Fourier decomposition of the field components, perhaps framing the superposition of
multiple fields in that context.

5. Appendix. Background details.

5.1. Conjugate split

The Hermitian conjugate is defined as

A† = γ0Ãγ0 (24)

The conjugate action on a multivector product is straightforward to calculate

(AB)† = γ0(AB)̃γ0

= γ0B̃Ãγ0

= γ0B̃γ0
2Ãγ0

= B† A†

For a spatial vector Hermitian conjugation leaves the vector unaltered

a = γ0(γkγ0)̃akγ0

= γ0(γ0γk)akγ0

= γkakγ0

= a

But the pseudoscalar is negated
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i† = γ0 ĩγ0

= γ0iγ0

= −γ0γ0i
= −i

This allows for a split by conjugation of the field into its electric and magnetic field compo-
nents.

F† = −γ0(E + icB)γ0

= −γ2
0(−E + icB)

= E− icB

So we have

E =
1
2
(F + F†) (25)

cB =
1
2i

(F − F†) (26)

5.2. Field Energy Momentum density four vector.

In the GA formalism the energy momentum tensor is

T(a) =
ε0

2
FaF̃ (27)

It is not necessarily obvious this bivector-vector-bivector product construction is even a vec-
tor quantity. Expansion of T(γ0) in terms of the electric and magnetic fields demonstrates this
vectorial nature.

Fγ0F̃ = −(E + icB)γ0(E + icB)
= −γ0(−E + icB)(E + icB)

= −γ0(−E2 − c2B2 + ic(BE− EB))

= γ0(E2 + c2B2)− 2γ0ic(B ∧ E))

= γ0(E2 + c2B2) + 2γ0c(B× E)

= γ0(E2 + c2B2) + 2γ0cγkγ0(B× E)k

= γ0(E2 + c2B2) + 2γk(E× (cB))k
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Therefore, T(γ0), the energy momentum tensor biased towards a particular observer frame γ0
is

T(γ0) = γ0
ε0

2
(E2 + c2B2) + γkε0(E× (cB))k (28)

Recognizable here in the components T(γ0) are the field energy density and momentum den-
sity. In particular the energy density can be obtained by dotting with γ0, whereas the (spatial
vector) momentum by wedging with γ0.

These are

U ≡ T(γ0) · γ0 =
1
2

(
ε0E2 +

1
µ0

B2
)

(29)

cP ≡ T(γ0) ∧ γ0 =
1
µ0

E× B (30)

In terms of the combined field these are

U =
−ε0

2
(Fγ0Fγ0 + γ0Fγ0F) (31)

cP =
−ε0

2
(Fγ0Fγ0 − γ0Fγ0F) (32)

Summarizing with the Hermitian conjugate

U =
ε0

2
(FF† + F†F) (33)

cP =
ε0

2
(FF† − F†F) (34)

5.2.1 Divergence.

Calculation of the divergence produces the components of the Lorentz force densities

∇ · T(a) =
ε0

2
〈∇(FaF)〉

=
ε0

2
〈(∇F)aF + (F∇)Fa〉

Here the gradient is used implicitly in bidirectional form, where the direction is implied by
context. From Maxwell’s equation we have

J/ε0c = (∇F)̃

= (F̃∇̃)
= −(F∇)
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and continuing the expansion

∇ · T(a) =
1
2c
〈JaF − JFa〉

=
1
2c
〈FJa− JFa〉

=
1
2c
〈(FJ − JF)a〉

Wrapping up, the divergence and the adjoint of the energy momentum tensor are

∇ · T(a) =
1
c
(F · J) · a (35)

T̄(∇) = F · J/c (36)

When integrated over a volume, the quantities F · J/c are the components of the RHS of the
Lorentz force equation ṗ = qF · v/c.
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