
Generator of rotations in arbitrary dimensions.

Originally appeared at:
http://sites.google.com/site/peeterjoot/math2009/rotationGenerator.pdf

Peeter Joot — peeter.joot@gmail.com
Aug 31, 2009 RCS f ile : rotationGenerator.ltx, v Last Revision : 1.10 Date : 2009/09/0404 : 51 : 15

1. Motivation.

Eli in his recent blog post on angular momentum operators used an exponential operator to
generate rotations

R∆θ = e∆θn̂·(x×∇) (1)

This is something I hadn’t seen before, but is comparable to the vector shift operator expressed
in terms of directional derivatives x ·∇

f (x + a) = ea·∇ f (x) (2)

The translation operator of (2) translates easily to higher dimensions. Of particular interest is
the Minkowski metric 4D spacetime case, where we can use the four gradient ∇ = γµ∂µ, and a
vector spacetime translation of x = xµγµ → (xµ + aµ)γµ to translate “trivially” translate this

f (x + a) = ea·∇ f (x) (3)

Since we don’t have a cross product of two vectors in a 4D space, re-expressing (1) in a form
that is not tied to three dimensions is desirable. A duality transformation with n̂ = ie1e2e3 ac-
complishes this, where i is a unit bivector for the plane perpendicular to n̂ (i.e. product of two
perpendicular unit vectors in the plane). That duality transformation, expressing the rotation di-
rection using an oriented plane instead of the normal to the plane gives us

n̂ · (x×∇) = 〈n̂(x×∇)〉
= 〈(ie1e2e3)(−e1e2e3)(x ∧∇)〉
= 〈i(x ∧∇)〉

This is just i · (x ∧∇), so the generator of the rotation in 3D is

R∆θ = e∆θi·(x∧∇) (4)

It’s reasonable to guess then that we could substitute the spacetime gradient and allow i to
be any 4D unit spacetime bivector, where a spacelike product pair will generate rotations and a
spacetime bivector will generate boosts. That’s really just a notational shift, and we’d write

1

http://behindtheguesses.blogspot.com/2009/08/noncommuting-rotation-and-angular.html


R∆θ = e∆θi·(x∧∇) (5)

This is very likely correct, but building up to this guess in a logical sequence from a known
point will be the aim of this particular exploration.

2. Setup and conventions.

Rather than expressing the rotation in terms of coordinates, here the rotation will be formu-
lated in terms of dual sided multivector operators (using Geometric Algebra) on vectors. Then
employing the chain rule an examination of the differential change of a multivariable scalar val-
ued function on the underlying rotation will be made.

Following conventions of ([1]) vectors will be undecorated rather than boldface since we are
deriving results applicable to four vector (and higher) spaces, and not requiring an Euclidean
metric.

Figure 1: Rotating vector in the plane with bivector i

The figure (1) has a pair of vectors related by rotation, where the vector x(θ) is rotated to
y(θ) = x(θ + ∆θ). We choose here to express this rotation using a quaternion-ic operator R =
α + ab, where α is a scalar and a, and b are vectors.

y = R̃xR (6)

Required of R is an invertability property, but without loss of generality we can impose a
strictly unitary property R̃R = 1. Here R̃ denotes the multivector reverse of a Geometric product

2



(ab)̃ = b̃ã (7)

Where for individual vectors the reverse is itself ã = a. A singly parametrized rotation or boost
can be conveniently expressed using the half angle exponential form

R = eiθ/2 (8)

where i = ûv̂ is a unit bivector, a product of two perpendicular unit vectors (ûv̂ = −v̂û). For
rotations û, and v̂ are both spatial vectors, implying i2 = −1. For boosts i is the product of a unit
timelike vector and unit spatial vector, and with a Minkowski metric condition û2v̂2 = −1, we
have a positive square i2 = 1 for our spacetime rotation plane i.

A general Lorentz transformation, containing a composition of rotations and boosts can be
formed by application of successive transformations

L(x) = (Ũ(T̃ · · · (S̃xS)T) · · ·U) = ŨT̃ · · · S̃xST · · ·U (9)

The composition still has the unitary property (ST · · ·U)̃ST · · ·U = 1, so when the specifics
of the parametrization are not required we will allow the rotation operator R = ST · · ·U to be a
general composition of individual rotations and boosts.

We will have brief use of coordinates and employ a reciprocal basis pair {γµ} and {γν} where
γµ · γν = δµ

ν. A vector, employing summation convention, is then denoted

x = xµγµ = xµγµ (10)

Where

xµ = x · γµ (11)
xµ = x · γµ (12)

Shorthand for partials

∂µ ≡
∂

∂xµ
(13)

∂µ ≡ ∂

∂xµ
(14)

will allow the gradient to be expressed as

∇ ≡ γµ∂µ = γµ∂µ (15)

The perhaps unintuitive mix of upper and lower indexes is required to make the indexes in
the direction derivative come out right when expressed as a dot product

lim
τ→0

f (x + aτ)− f (x)
τ

= aµ∂µ f (x) = a · ∇ f (x) (16)

3



3. Rotor examples.

While not attempting to discuss the exponential rotor formulation in any depth, at least illus-
trating by example for a spatial rotation and Lorentz boost seems called for.

Application of either of these is most easily performed with a split of the vector into compo-
nents parallel and perpendicular to the “plane” of rotation i. For example suppose we decompose
a vector x = p + n where n is perpendicular to the rotation plane i (i.e. ni = in), and p is the
components in the plane (pi = −ip). A consequence is that n commutes with R and p induces a
conjugate effect in the rotor

R̃xR = e−iθ/2(p + n)eiθ/2

= peiθ/2eiθ/2 + ne−iθ/2eiθ/2

This is then just

R̃xR = peiθ + n (17)

To expand any further the metric details are required. The half angle rotors of (8) can be
expanded in series, where the metric properties of the bivector dictate the behavior. In the spatial
bivector case, where i2 = −1 we have

R = eiθ/2 = cos(θ/2) + i sin(θ/2) (18)

whereas when i2 = 1, the series expansion yields a hyperbolic pair

R = eiθ/2 = cosh(θ/2) + i sinh(θ/2) (19)

To make things more specific, and relate to the familiar, consider a rotation in the Euclidean
x, y plane where we pick i = e1e2, and rotate x = xe1 + ye2 + ze3. Applying (17), and (18) we
have

R̃xR = (xe1 + ye2)(cos θ + e1e2 sin θ) + ze3

We have e1
2 = e2

2 = 1 and e1e2 = −e1e2, so with some rearrangement

R̃xR = e1(x cos θ − y sin θ) + e2(x sin θ + y cos θ) + e3z

This is the familiar x, y plane rotation up to a possible sign preference. Observe that we have
the flexibility to adjust the sign of the rotation by altering either θ or i (we could use i = e2e1 for
example). Because of this Hestenes ([2]) chooses to make the angle bivector valued, so instead of
iθ writes

4



R = eB (20)

where B is bivector valued, and thus contains the sign or direction of the rotation or boost as
well as the orientation.

For completeness lets also expand a rotor application for an x-axis boost in the spacetime plane
i = γ1γ0. Following ([1]), we use the (+,−,−,−) metric convention 1 = γ0

2 = −γ1
2 = −γ2

2 =
−γ3

2. Switching variable conventions to match the norm lets use α for the rapidity angle, with
x-axis boost rotor

R = eγ1γ0α/2 (21)

for the rapidity angle α. The rotor application then gives

L(x) = R̃(x0γ0 + x1γ1 + x2γ2 + x3γ3)R

= R̃(x0γ0 + x1γ1)R + x2γ2 + x3γ3

= (x0γ0 + x1γ1)(cosh(θ) + γ1γ0 sinh(θ/2)) + x2γ0 + x3γ3

A final bit of rearrangement yields the familiar

L(x) = γ0(x0 cosh(θ)− x1 sinh(θ/2)) + γ1(−x0 sinh(θ/2) + x1 cosh(θ)) + x2γ0 + x3γ3 (22)

Again observe the flexibility to adjust the sign as desired by either the bivector orientation or
the sign of the scalar rapidity angle.

4. The rotation operator.

Moving on to the guts. From (6) we can express x in terms of y using the inverse transformation

x = RyR̃ (23)

Assuming R is parametrized by θ, and that both x and y are not directly dependent on θ, we
have

dx
dθ

=
dR
dθ

yR̃ + Ry
dR̃
dθ

=
(

dR
dθ

R̃
)

(RyR̃) + (RyR̃)
(

R
dR̃
dθ

)
=

(
dR
dθ

R̃
)

x + x
(

R
dR̃
dθ

)

5



Since we also have RR̃ = 1, this product has zero derivative

0 =
d(RR̃)

dθ
=

dR
dθ

R̃ + R
dR̃
dθ

Labeling one of these, say

Ω ≡ dR
dθ

R̃ (24)

The multivector Ω must in fact be a bivector. As the product of a grade 0, 2 multivector with
another 0, 2 multivector, the product may have grades 0, 2, 4. Since reversing Ω negates it, this
product can only have grade 2 components. In particular, employing the exponential representa-
tion of R from (8) for a simply parametrized rotation (or boost), we have

Ω =
i
2

eiθ/2e−iθ/2 =
i
2

(25)

With this definition we have a
complete description of the incremental (first order) rotational along the curve from x to y

induced by R via the commutator of this bivector Ω with the initial position vector x.

dx
dθ

= [Ω, x] =
1
2
(ix − xi) (26)

This commutator is in fact the generalize bivector-vector dot product [Ω, x] = i · x, and is
vector valued.

Now consider a scalar valued function f = f (x(θ)). Employing the chain rule, for the theta
derivative of f we have a contribution from each coordinate xµ. That is

d f
dθ

= ∑
µ

dxµ

dθ

∂ f
∂xµ

=
dxµ

dθ
∂µ f

=
(

dxµ

dθ
γµ

)
· (γν∂ν) f

But this is just

d f
dθ

=
dx
dθ

· ∇ f (27)

Or in operator form

d
dθ

= (i · x) · ∇ (28)

6



The complete Taylor expansion of f (θ) = f (x(θ)) is therefore

f (x(θ + ∆θ)) =
∞

∑
k=0

1
k!

(
∆θ

d
dθ

)k

f (x(θ))

=
∞

∑
k=0

1
k!

(∆θ(i · x) · ∇)k f (x(θ))

Expressing this sum formally as an exponential we have

f (x(θ + ∆θ)) = e∆θ(i·x)·∇ f (x(θ)) (29)

In this form, the product (i · x) · ∇ does not look much like the cross or wedge product repre-
sentations of the angular momentum operator that was initially guessed at. Referring to figure (2)
let’s make a couple observations about this particular form before translating back to the wedge
formulation.

Figure 2: Bivector dot product with vector.

It is worth pointing out that any bivector has no unique vector factorization. For example any
of the following are equivalent

i = û ∧ v̂
= (2û) ∧ (v̂/2 + αû)

=
1

αb− βa
(αû + βv̂) ∧ (aû + bv̂)

7



For this reason if we factor a bivector into two vectors within the plane we are free to pick one
of these in any direction we please and can pick the other in one of the perpendiculars within the
plane. In the figure exactly this was done, factoring the bivector into two perpendicular vectors
i = ûv̂, where û was picked to be in the direction of the projection of the vector x onto the plane
spanned by {û, v̂}. Suppose that projection of x onto the plane is αû. We then have for the bivector
vector dot product

i · x = (ûv̂) · (αû)
= αûv̂û
= −α ûû︸︷︷︸

=1

v̂

So we have for the dot product i · x = −αv̂, a rotation in the plane of the projection of the vector
x onto the plane by 90 degrees. The direction of the rotation is metric dependent, and a spatially
positive metric was used in this example. Observe that the action of a bivector product on a vector,
provided that vector is in the plane spanned by the factors of the bivector is very much like the
complex imaginary action. In both cases we have a 90 degree rotation. This complex number
correspondence is not entirely equivalent though, since we also have i · x = −x · i, a negation on
reversal of the product ordering, whereas we don’t have to worry about commuting the imaginary
of complex arithmetic.

This shows how the bivector dot product naturally encodes a rotation. We could leave things
this way, but we also want to see how to put this in a more “standard” form. This is possible by
rewriting the scalar product using a scalar grade selection operator. Also employing the cyclic
reordering identity 〈abc〉 = 〈bca〉, we have

(i · x) · ∇ =
1
2
〈(ix − xi)∇〉

=
1
2
〈ix∇−∇xi〉

A pause is required to note that this reordering needs to be interpreted with x fixed with
respect to the gradient so that the gradient is acting only to the extreme right. Then we have

(i · x) · ∇ =
1
2
〈i(x · ∇)− (x · ∇)i〉 +

1
2
〈i(x ∧∇) + (x · ∇)i〉 (30)

The rightmost action of the gradient allows the gradient dot and wedge products to be re-
ordered (with interchange of sign for the wedge). The product in the first scalar selector has only
bivector terms, so we are left with

(i · x) · ∇ = i · (x ∧∇) (31)

and the rotation operator takes the postulated form

8



f (x(θ + ∆θ)) = e∆θi·(x∧∇) f (x(θ)) (32)

While the cross product formulation of this is fine for 3D, this works in a plane when desired, as
well as higher dimensional spaces as well as optionally non-Euclidean spaces like the Minkowski
space required for electrodynamics and relativity.

5. Coordinate expansion.

We’ve seen the structure of the scalar angular momentum operator of (31) in the context of
components of the cross product angular momentum operator in 3D spaces. For a more general
space what do we have?

Let i = γβγα, then we have

i · (x ∧∇) = (γβ ∧ γα) · (γµ ∧ γν)xµ∂ν

= (δβ
νδα

µ − δβ
µδα

ν)xµ∂ν

which is

(γβ ∧ γα) · (x ∧∇) = xα∂β − xβ∂α (33)

In particular, in the four vector Minkowski space, when the pair α, β includes both space and
time indexes we loose (or gain) negation in this operator sum. For example with i = γ1γ0, we
have

(γ1 ∧ γ0) · (x ∧∇) = x0 ∂

∂x1 + x1 ∂

∂x0 (34)

We can also generalize the coordinate expansion of (33) to a more general plane of rotation.
Suppose that u and v are two perpendicular unit vectors in the plane of rotation. For this rotational
plane we have i = uv = u ∧ v, and our expansion is

i · (x ∧∇) = (γβ ∧ γα) · (γµ ∧ γν)uβvαxµ∂ν

= (δβ
νδα

µ − δβ
µδα

ν)uβvαxµ∂ν

So we have

i · (x ∧∇) = (uνvµ − uµvν)xµ∂ν (35)

This scalar antisymmetric mixed index object is apparently called a vierbien (not a tensor) and
written

9



ενµ = (uνvµ − uµvν) (36)

It would be slightly prettier to raise the index on xµ (and correspondingly lower the µs in
ε). We then have a completely non Geometric Algebra representation of the angular momentum
operator for higher dimensions (and two dimensions) as well as for the Minkowski (and other if
desired) metrics.

i · (x ∧∇) = εν
µxµ∂ν (37)

6. Matrix treatment.

It should be more accessible to do the same sort of treatment with matrices than the Geometric
Algebra approach. It did not occur to me to try it that way initially, and it is worthwhile to do a
comparative derivation. Setup should be similar

y = Rx (38)

x = RTy (39)

Taking derivatives we then have

dx
dθ

=
dRT

dθ
y

=
dRT

dθ
RRTy

=
(

dRT

dθ
R

)
x

Introducing an Ω = (dRT/dθ)R very much like before we can write this

dx
dθ

= Ωx (40)

For Euclidean spaces (where R−1 = RT as assumed above), we have RTR = 1, and thus

Ω =
dRT

dθ
R = −RT dR

dθ
(41)

Transposition shows that this matrix Ω is completely antisymmetric since we have

ΩT = −Ω (42)

10



Now, is there a convenient formulation for a general plane rotation in matrix form, perhaps
like the Geometric exponential form? Probably can be done, but considering an x,y plane rotation
should give the rough idea.

Rθ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (43)

After a bit of algebra we have

Ω =

 0 1 0
−1 0 0
0 0 0

 (44)

In general we must have

Ω =

0 −c b
c 0 −a
b a 0

 (45)

For some a, b, c. This procedure is not intrinsically three dimension, but in the specific 3D case,
we can express this antisymetrization using the cross product. Writing n̂ = (a, b, c) for the vector
with these components, we have in the 3D case only

Ωx = n̂× x (46)

The first order rotation of a function f (x(θ)) now follows from the chain rule as before

d f
dθ

=
dxm

dθ

∂ f
∂xm

=
dx
dθ

·∇ f

= (n× x) ·∇ f

We have then for the first order rotation derivative operator in 3D

d
dθ

= n · (x×∇) (47)

For higher (or 2D) spaces one cannot use the cross product so a more general expression of the
result (47) would be

d
dθ

= (Ωx) ·∇ (48)

11



Now, in this outline was a fair amount of cheating. We know that n̂ is the unit normal to the
rotational plane, but that hasn’t been shown here. Instead it was a constructed quantity just pulled
out of thin air knowing it would be required. If one were interested in pursuing a treatment of the
rotation generator operator strictly using matrix algebra, that would have to be considered. More
troublesome and non-obvious is how this would translate to other metric spaces, where we do not
necessarily have the transpose relationships to exploit.

References

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New
York, Cambridge, UK, 1st edition, 2003.

[2] D. Hestenes. New Foundations for Classical Mechanics. Kluwer Academic Publishers, 1999.

12


	Motivation.
	Setup and conventions.
	Rotor examples.
	The rotation operator.
	Coordinate expansion.
	Matrix treatment.

