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1. Notes.

Chapter IV notes and problems for [1].

There’s a lot of magic related to the spherical Harmonics in this chapter, with identities pulled
out of the Author’s butt. It would be nice to work through that, but need a better reference to
work from (or skip ahead to chapter 26 where some of this is apparently derived).

Other stuff pending background derivation and verification are

1.1. Antisymmetric tensor summation identity.

Y €ijk€iab = 6jabk — SOk 1)
i

This is obviously the coordinate equivalent of the dot product of two bivectors

(ejAex) (eaNey) = ((ejAex) eq) - e) = Sl — Jjadry 2)

We can prove 1 by expanding the LHS of 2 in coordinates

(ej Aex)-(es Ney) =) (€ijkejexecpeatsy)

ie

=) eijcear((eie;)ejer(ece.)esey)
ie
= Zeijkeeab<eiee12>
ie
= — ) EijkEearSic
ie
==Y €€y U
i
1.2. Question on raising and lowering arguments.

How equation (4.240) was arrived at is not clear. In (4.239) he writes

27 7T
/ / d0d¢(L_ i) L_ Y} sin 0
0 0

Shouldn’t that Hermitian conjugation be just complex conjugation? if so one would have

27T T
/ / d0dgL* Y}, L_ Y sin 6
0 0

How does he end up with the L _ and the Y}, interchanged. What justifies this commutation?
A much clearer discussion of this can be found in The operators L+, where Dirac notation is
used for the normalization discussion.


http://quantummechanics.ucsd.edu/ph130a/130_notes/node217.html

1.2.1 Vatche’s explaination.

Asked Vatche about this and had it explained nicely. He also used the braket notation, and
wrote

(0,9l m) = Yin(6,9) 3)

and introduces the identity

" TT 27
1:/0 dGSinG/O d¢10,9) (6, ¢| @)

Now, if we want to normalize the state L_|I, m) we write

(L,m|LYL_|l,m) = (I,m|LY L_|1,m)
T 27 T 27
:/ desme/ d4>/ de’sine// d/ (1, m|, ) (6,9|L L_|0',¢') (&', ¢'|1,m)
0 JO JO 0
T 27 T 27
— / d6sin 6 / dp / 46 sin ¢/ / dg'Y;, (6, 0)(6, |LL_|6, ') Vi (6, ')
0 0 0 0

Now he points out that the matrix element has both the differential operator portion, as well
as a delta function portion, so we would have

1

(0, $ILL-10',¢') = =566~ 0)5(p — )L (0, )L (6,4)

where the raising and lowering operators are now in thier differential form

L (0,9)L_(0,¢) = e (dg +icotfdy) e ™ (—dp +icot0dy)

This now gives us

T 27 T 27
(mlL Lo ftm) = [ a0 [“ag [Ca0sing’ [ dg'Yi, (0,0)L+ (0,9)L-(6,9)Yin (0',¢")0(0 — 6)3(9 — ¢
T 27
= [ dosing [ agY;, (0, 0)L(0,¢)L- (6,9 (0,¢)

This now fills in the reasoning (and notational) gap that the text has between (4.239) and
(4.240). It is now clear that in 4.239 (where Hermitian conjugation seemed out of place), that it
should just have been regular complex number conjugation. In the context of the normalization
integral, Hermitian conjugation plays no role. Here the L_Y,, used in the text are just functions.

1.3. Another question on raising and lowering arguments.

The reasoning leading to (4.238) isn’t clear to me. I fail to see how the L_ commutation with
L? implies this?



2. Problems

2.1. Problem 1.
2.1.1 Statement.

Write down the free particle Schrodinger equation for two dimensions in (i) Cartesian and (ii)
polar coordinates. Obtain the corresponding wavefunction.
2.1.2 Cartesian case.

For the Cartesian coordinates case we have

hz
H - —%(axx + ayy) - Zhat (5)

Application of separation of variables with ¥ = XYT gives

hz X// Y// ‘ T/
_% <X+Y> —lhT—E. (6)

Immediately, we have the time dependence

T e E/N, )
with the PDE reduced to
X"y 2mE
Xty =T ®

Introducing separate independent constants

Xl/

Y// 2
+ =b (10)

provides the pre-normalized wave function and the constraints on the constants

Y — CeaxebyefiEt/h (11)
2mE
f+#:—%;. (12)



2.1.3 Rectangular normalization.

We are now ready to apply normalization constraints. One possibility is a rectangular period-
icity requirement.

o™ — ea(x+)\x) (13)

e”y — e“(]/+)‘y), (14)
or

aly = 2mim (15)

aA, = 27in. (16)

This provides a more explicit form for the energy expression

1 m2 n?
Epn = —47°H* | — + — |. 17
m =5 h (Ax2+)\y2> (17)
We can also add in the area normalization using
Ax Ax .
Wlo) = [ dx [ dyy (xy)p(xv). (18)
x=0 y=0

Our eigenfunctions are now completely specified

1 eZnix/AXEZHiy/)\ye—iEt/h. (19)

umn(x/ Y, t) = \/TTM

The interesting thing about this solution is that we can make arbitrary linear combinations

f(x,y) = amnlimn (20)

and then “solve” for a,,,, for an arbitrary f(x,y) by taking inner products

)\X )\3(
= (wnlf) = [ dx [ dy ey () @

This gives the appearance that any function f(x,y) is a solution, but the equality of 20 only
applies for functions in the span of this function vector space. The procedure works for arbitrary
square integrable functions f(x, y), but the equality really means that the RHS will be the periodic
extension of f(x,y).



2.1.4 Infinite space normalization.

An alternate normalization is possible by using the Fourier transform normalization, in which
we substitute

27mtm
A ky (22)
27nn
Ty =ky (23)
Our inner product is now
lg) = [ _dx [ dyy*(xy)g(xy). )

And the corresponding normalized wavefunction and associated energy constant E are

1 ikexikyy —iEt/h L ikex —iEt/n
— X vy =1 — ik-x ,—i )
ug(x,y,t) 27[8 e"vYe 2ne e (25)
h?K>
b= (26)

Now via this Fourier inner product we are able to construct a solution from any square inte-
grable function. Again, this will not be an exact equality since the Fourier transform has the effect
of averaging across discontinuities.

2.1.5 Polar case.

In polar coordinates our gradient is

0
V =19, + 9. (27)
with
f = eqe1®2? (28)
0 = eye®1. (29)

Squaring the gradient for the Laplacian we’ll need the partials, which are

0,8 =0
9,0 =0
dpt = 0
090 = —¢

The Laplacian is therefore



A

] ]
V2 = (29, + —09) - (20, + —0y)
] 6 .8
= arr + - aefar* : 89789
r r r

A A N

] o 0 ] 1
=0y + —- (agf)ar + — - —0gg + — - (890)739.
r r r r r

Evalating the derivatives we have

1 1
V2 = arr + *ar + 7899/ (30)
r r
and are now prepared to move on to the solution of the Hamiltonian H = — (hz / 2m) V2. With
separation of variables again using ¥ = R(r)®(0)T(t) we have
w (R' R 10"\ T
Rearranging to separate the ® term we have
r?R" rR' 2mE , e .,
The angular solutions are given by
O= o (33)
V21
Where the normalization is given by
2 .
i) = [ doy* @)p0) 3
And the radial by the solution of the PDE
rR" +rR + <2Z12E r’E — /\2> R=0 (35)
2.2. Problem 2.
2.21 Statement.
Use the orthogonality property of P;(cos 6)
1 d 2 0
/71 xPy(x)Pr(x) = TR (36)



confirm that at least the first two terms of (4.171)

[ee]

eikrcos@ — Z(zl + 1)il]'l<kr)Pl(COS 9)
1=0
are correct.

2.2.2 Solution.

Taking the inner product using the integral of 36 we have

1 .
/_ 1 dxe™* P/ (x) = 2i'j; (kr)

To confirm the first two terms we need

P()(x) =1

Pi(x) =x

. __sinp

jo(p) 0

) sin cos
Ol

p? p
On the LHS for I’ = 0 we have

/1 dxeier _ 2511'1 kr
-1 kr

On the LHS for I’ = 1 note that
) ikrx
/dxxe’k”‘ = /dxxde

dx ikr
eier eier

= X— - 72
ikr  (ikr)

So, integration in [—1, 1] gives us

1 . 1
/ dxelre — 0 SOSKr o, sinkr.
-1

kr (kr)?
Now compare to the RHS for I’ = 0, which is

sin kr

2jo(kr) =2 i

which matches 43. For I’ = 1 we have

. .1 (sinkr
2ij1(kr) = 215 ( P coskr) ,

which in turn matches 44, completing the exersize.

8

(37)

(38)

(39)
(40)

(41)

(42)

(43)

(44)

(45)

(46)



2.3. Problem 3.
2.3.1 Statement.

Obtain the commutation relations [L;, L;] by calculating the vector L x L using the definition
L = r x p directly instead of introducing a differential operator.

2.3.2 Solution.

Expressing the product L x L in determinant form sheds some light on this question. That is

€ € €3
Ly Ly Ls| =e;[Ly, Ls] +ex[Ls, L1] + e3[Ly, Lo] = ejeji [Lj, L] (47)
L1 L, Lj3

We see that evaluating this cross product in turn requires evaluation of the set of commutators.
We can do that with the canonical commutator relationships directly using L; = €;;x7;py like so

[Li/ Lj] = eimnrmpnejabrapb - ejabrapbeimnrmpn
= eimnejabrm(f)nra)ph - ejabeimnra(pbrm)pn
= eimnejabrm(rapn - ihéun)pb - ejabeimnra<rmpb - Zhémb)pn

= eimnejab(rmrapnpb - TarmePn) - ih(eimnejnbrmpb - ejameimnrapn)-

The first two terms cancel, and we can employ (4.179) to eliminate the antisymmetric tensors
from the last two terms

[Li, Lj] = 1h(emmen]brmpb E€mja€minTaPn)
= i1((8ij0mb — OibOmj)rmPp — (8ji0an — Sjnbai)TapPn)
lh(5l]5mb7’me SjibantaPn — OitOmjTmPp + OjndaitaPn)
= ih(0ij"mPm — OjiTaPa — TjPi +1iP;)

For k # i,j, this is ifi(r X p)k, SO we can write

LxL= ihekaij(Tipj — rjpi) = ihL = ihekLk = ihL. (48)

In [2], the commutator relationships are summarized this way, instead of using the antisym-
metric tensor (4.224)

[Li, L]] = iheijkLk (49)

as here in Desai. Both say the same thing.



2.4. Problem 4.

2.4.1 Statement.

2.4.2 Solution.
TODO.

2.5. Problem 5.
2.5.1 Statement.

A free particle is moving along a path of radius R. Express the Hamiltonian in terms of the
derivatives involving the polar angle of the particle and write down the Schrodinger equation.
Determine the wavefunction and the energy eigenvalues of the particle.

2.5.2 Solution.

In classical mechanics our Lagrangian for this system is

L= %mRzéz, (50)
with the canonical momentum
po = Z’g = mR?6. (51)
Thus the classical Hamiltonian is
H= o opi 62)

By analogy the QM Hamiltonian operator will therefore be

hZ

H=-3 %

g (53)

For ¥ = ©(0)T(t), separation of variables gives us

—ZYZ;Z%/ = ihil; =E, (54)

from which we have
T o o—Et/M (55)
® o ¢ HIV2MERI/N, (56)

Requiring single valued ©, equal at any multiples of 277, we have

oiV2ZmER(04+270) /Tt _ ,+iv/2mER6 /N
- 7

10



or
R
+V ZmEﬁ27r = 27n,

Suffixing the energy values with this index we have

n2h?
Allowing both positive and negative integer values for n we have
(58)

@ L b, iEut/h
V27T

where the normalization was a result of the use of a [0, 27| inner product over the angles

2
(59)

wiey= [ v 0)p(6)de.
2.6. Problem 6.
2.6.1 Statement.

Determine [L;, 7] and [L;, 1].

2.6.2 Solution.
Since L; contain only 6 and ¢ partials, [L;, ] = 0. For the position vector, however, we have

an angular dependence, and are left to evaluate [L;, r] = r [L;, £]. We'll need the partials for . We

have
t = egel?? (60)
b = exen1®? 61)
I= ejeqes (62)
Evaluating the partials we have
dpt = £
With
0 = ReiR (63)
(i) = RezR (64)
t = ResR (65)

where RR = 1, and @)(i)i‘ = ejepe3, we have



89f = R83eleze392R = RelR = é
For the ¢ partial we have

dpt = ezsinflpe;e;
= sin0¢

We are now prepared to evaluate the commutators. Starting with the easiest we have

L, 8] ¥ = —in(0,8¥ — £9,¥F)
— —in(9pf) ¥

So we have

[L., %] = —ilisinf¢

(66)

(67)

Observe that by virtue of chain rule, only the action of the partials on # itself contributes, and
all the partials applied to ¥ cancel out due to the commutator differences. That simplifies the

remaining commutator evaluations. For reference the polar form of Ly, and L, are

Lx = —lh(—S¢ag - C(p cot 984;)
Ly = —zh(C¢89 - Scp cot 984;),

where the sines and cosines are written with S, and C respectively for short.
We therefore have

[Lx, f'] = —zh(—S¢(89f) — Cq; cot9(6¢f))
= —il(—Sp0 — Cy cot 0Sp)
= —ih(=548 — CyCo)

and
[Ly, f‘] = —lh(C(P(agf') — S‘P cot9(8¢f))
= —il(Cyp — SpCo ).
Adding back in the factor of r, and summarizing we have
[Li, 7’] =0
[Ly,¥] = —ifir(— sin ¢p® — cos ¢ cos O¢p)

[Ly, ] = —ihr(cos ¢p8 — sin ¢ cos 0¢)
[L., ] = —ihrsinf¢

12

(68)
(69)

(70)
(71)
(72)
(73)



2.7. Problem 7.

2.7.1 Statement.

Show that

2.7.2 Solution.
TODO.
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