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1. Motivation.

In class this week, looking at an instance of the Helmholtz equation(
∇2 + k2

)
ψk(r) = s(r). (1)

We were told that the Green’s function(
∇2 + k2

)
G0(r, r′) = δ(r− r′) (2)

that can be used to solve for a particular solution this differential equation via convolution

ψk(r) =
∫

G0(r, r′)s(r′)d3r′, (3)

had the value

G0(r, r′) = − 1
4π

eik|r−r′|

|r− r′| . (4)

Let’s try to verify this.

2. Guts

Application of the Helmholtz differential operator ∇2 + k2 on the presumed solution gives

(∇2 + k2)ψk(r) = −
1

4π

∫
(∇2 + k2)

eik|r−r′|

|r− r′| s(r
′)d3r′. (5)
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2.1. When r 6= r′.

To proceed we’ll need to evaluate

∇2 eik|r−r′|

|r− r′| . (6)

Writing µ = |r− r′| we start with the computation of

∂

∂x
eikµ

µ
=

∂µ

∂x

(
ik
µ
− 1

µ2

)
eikµ

=
∂µ

∂x

(
ik− 1

µ

)
eikµ

µ

We see that we’ll have

∇ eikµ

µ
=

(
ik− 1

µ

)
eikµ

µ
∇µ. (7)

Taking second derivatives with respect to x we find

∂2

∂x2
eikµ

µ
=

∂2µ

∂x2

(
ik− 1

µ

)
eikµ

µ
+

∂µ

∂x
∂µ

∂x
1
µ2

eikµ

µ
+

(
∂µ

∂x

)2 (
ik− 1

µ

)2 eikµ

µ

=
∂2µ

∂x2

(
ik− 1

µ

)
eikµ

µ
+

(
∂µ

∂x

)2 (
−k2 − 2ik

µ
+

2
µ2

)
eikµ

µ
.

Our Laplacian is then

∇2 eikµ

µ
=

(
ik− 1

µ

)
eikµ

µ
∇2µ +

(
−k2 − 2ik

µ
+

2
µ2

)
eikµ

µ
(∇µ)2. (8)

Now lets calculate the derivatives of µ. Working on x again, we have

∂

∂x
µ =

∂

∂x

√
(x− x′)2 + (y− y′)2 + (z− z′)2

=
1
2

2(x− x′)
1√

(x− x′)2 + (y− y′)2 + (z− z′)2

=
x− x′

µ
.

So we have

∇µ =
r− r′

µ
(9)

(∇µ)2 = 1 (10)

Taking second derivatives with respect to x we find
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∂2

∂x2 µ =
∂

∂x
x− x′

µ

=
1
µ
− (x− x′)

∂µ

∂x
1
µ2

=
1
µ
− (x− x′)

x− x′

µ

1
µ2

=
1
µ
− (x− x′)2 1

µ3 .

So we find

∇2µ =
3
µ
− 1

µ
, (11)

or

∇2µ =
2
µ

. (12)

Inserting this and (∇µ)2 into 8 we find

∇2 eikµ

µ
=

(
ik− 1

µ

)
eikµ

µ

2
µ
+

(
−k2 − 2ik

µ
+

2
µ2

)
eikµ

µ
= −k2 eikµ

µ
(13)

This shows us that provided r 6= r′ we have

(∇2 + k2)G0(r, r′) = 0. (14)

2.2. In the neighborhood of |r− r′| < ε.

Having shown that we end up with zero everywhere that r 6= r′ we are left to consider a
neighborhood of the volume surrounding the point r in our integral. Following the Coulomb
treatment in §2.2 of [1] we use a spherical volume element centered around r of radius ε, and then
convert a divergence to a surface area to evaluate the integral away from the problematic point

− 1
4π

∫
all space

(∇2 + k2)
eik|r−r′|

|r− r′| s(r
′)d3r′ = − 1

4π

∫
|r−r′|<ε

(∇2 + k2)
eik|r−r′|

|r− r′| s(r
′)d3r′ (15)

We make the change of variables r′ = r + a. We add an explicit r suffix to our Laplacian at the
same time to remind us that it is taking derivatives with respect to the coordinates of r = (x, y, z),
and not the coordinates of our integration variable a = (ax, ay, az). Assuming sufficient continuity
and “well behavedness” of s(r′) we’ll be able to pull it out of the integral, giving

− 1
4π

∫
|r−r′|<ε

(∇2
r + k2)

eik|r−r′|

|r− r′| s(r
′)d3r′ = − 1

4π

∫
|a|<ε

(∇2
r + k2)

eik|a|

|a| s(r + a)d3a

= − s(r)
4π

∫
|a|<ε

(∇2
r + k2)

eik|a|

|a| d3a
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Recalling the dependencies on the derivatives of |r− r′| in our previous gradient evaluations,
we note that we have

∇r
∣∣r− r′

∣∣ = −∇a|a| (16)

(∇r
∣∣r− r′

∣∣)2 = (∇a|a|)2 (17)

∇2
r
∣∣r− r′

∣∣ = ∇2
a|a|, (18)

so with a = r− r′, we can rewrite our Laplacian as

∇2
r

eik|r−r′|

|r− r′| = ∇2
a

eik|a|

|a| = ∇a ·
(
∇a

eik|a|

|a|

)
(19)

This gives us

− s(r)
4π

∫
|a|<ε

(∇2
a + k2)

eik|a|

|a| d3a = − s(r)
4π

∫
dV

∇a ·
(
∇a

eik|a|

|a|

)
d3a− s(r)

4π

∫
dV

k2 eik|a|

|a| d3a

= − s(r)
4π

∫
dA

(
∇a

eik|a|

|a|

)
· âd2a− s(r)

4π

∫
dV

k2 eik|a|

|a| d3a

To complete these evaluations, we can now employ a spherical coordinate change of variables.
Let’s do the k2 volume integral first. We have

∫
dV

k2 eik|a|

|a| d3a =
∫ ε

a=0

∫ π

θ=0

∫ 2π

φ=0
k2 eika

a
a2da sin θdθdφ

= 4πk2
∫ ε

a=0
aeikada

= 4π
∫ kε

u=0
ueiudu

= 4π (−iu + 1)eiu
∣∣∣kε

0

= 4π
(
(−ikε + 1)eikε − 1

)
To evaluate the surface integral we note that we’ll require only the radial portion of the gradi-

ent, so have

(
∇a

eik|a|

|a|

)
· â =

(
â

∂

∂a
eika

a

)
· â

=
∂

∂a
eika

a

=

(
ik

1
a
− 1

a2

)
eika

= (ika− 1)
eika

a2
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Our area element is a2 sin θdθdφ, so we are left with

∫
dA

(
∇a

eik|a|

|a|

)
· âd2a =

∫ π

θ=0

∫ 2π

φ=0
(ika− 1)

eika

a2 a2 sin θdθdφ

∣∣∣∣
a=ε

= 4π (ikε− 1) eikε

(20)

Putting everything back together we have

− 1
4π

∫
all space

(∇2 + k2)
eik|r−r′|

|r− r′| s(r
′)d3r′ = −s(r)

(
(−ikε + 1)eikε − 1 + (ikε− 1) eikε

)
= −s(r)

(
(−ikε + 1 + ikε− 1)eikε − 1

)
But this is just

− 1
4π

∫
all space

(∇2 + k2)
eik|r−r′|

|r− r′| s(r
′)d3r′ = s(r). (21)

This completes the desired verification of the Green’s function for the Helmholtz operator.
Observe the perfect cancellation here, so the limit of ε → 0 can be independent of how large k
is made. You have to complete the integrals for both the Laplacian and the k2 portions of the
integrals and add them, before taking any limits, or else you’ll get into trouble (as I did in my first
attempt).
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