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1. Motivation.

In class this week, the Lorentz force was derived from an action (the simplest Lorentz invariant,
gauge invariant, action that could be constructed)

S = −mc
∫

ds− e
c

∫
dsAiui. (1)

We end up with the familiar equation, with the exception that the momentum includes the
relativistically required gamma factor

d(γmv)
dt

= e
(

E +
v
c
× B

)
. (2)

I asked what the energy term of this equation would be and was answered that we would get
to it, and it could be obtained by a four vector minimization of the action which produces the
Lorentz force equation of the following form

dui

dτ
∝ eFijuj. (3)

Let’s see if we can work this out without the four-vector approach, using the action expressed
with an explicit space time split, then also work it out in the four vector form and compare as a
consistency check.
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2. Three vector approach.

2.1. The Lorentz force derivation.

For completeness, let’s work out the Lorentz force equation from the action 1. Parameterizing
by time we have

S = −mc2
∫

dt

√
1− v2

c2 − e
∫

dt

√
1− v2

c2 γ

(
1,

1
c

v
)
· (φ, A)

= −mc2
∫

dt

√
1− v2

c2 − e
∫

dt
(

φ− 1
c

A · v
)

Our Lagrangian is therefore

L(x, v, t) = −mc2

√
1− v2

c2 − eφ(x, t) +
e
c

A(x, t) · v (4)

We can calculate our conjugate momentum easily enough

∂L
∂v

= γmv +
e
c

A, (5)

and for the gradient portion of the Euler-Lagrange equations we have

∂L
∂x

= −e∇φ + e∇
(v

c
·A
)

. (6)

Utilizing the convective derivative (i.e. chain rule in fancy clothes)

d
dt

= v ·∇+
∂

∂t
. (7)

This gives us

− e∇φ + e∇
(v

c
·A
)
=

d(γmv)
dt

+
e
c
(v ·∇)A +

e
c

∂A
∂t

, (8)

and a final bit of rearranging gives us

d(γmv)
dt

= e
(
−∇φ− 1

c
∂A
∂t

)
+

e
c
(∇ (v ·A)− (v ·∇)A) . (9)

The first set of derivatives we identify with the electric field E. For the second, utilizing the
vector triple product identity [1]

a× (b× c) = b(a · c)− (a · b)c, (10)

we recognize as related to the magnetic field v× B = v× (∇×A).
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2.2. The power (energy) term.

When we start with an action explicitly constructed with Lorentz invariance as a requirement,
it is somewhat odd to end up with a result that has only the spatial vector portion of what should
logically be a four vector result. We have an equation for the particle momentum, but not one
for the energy. In tutorial Simon provided the hint of how to approach this, and asked if we had
calculated the Hamiltonian for the Lorentz force. We had only calculated the Hamiltonian for the
free particle.

Considering this, we can only actually calculate a Hamiltonian for the case where φ(x, t) =
φ(x) and A(x, t) = A(x), because when the potentials have any sort of time dependence we do
not have a Lagrangian that is invariant under time translation. Returning to the derivation of
the Hamiltonian conservation equation, we see that we must modify the argument slightly when
there is a time dependence and get instead

d
dt

(
∂L
∂v
· L − L

)
+

∂L
∂t

= 0. (11)

Only when there is no time dependence in the Lagrangian, do we have our conserved quantity,
what we label as energy, or Hamiltonian.

From 5, we have

0 =
d
dt

((
γmv +

e
c

A
)
· v + mc2

√
1− v2

c2 + eφ− e
c

A · v
)
− e

∂φ

∂t
+

e
c

∂A
∂t
· v

Our A · v terms cancel, and we can combine the γ and γ−1 terms, then apply the convective
derivative again

d
dt
(
γmc2) = −e

(
v ·∇+

∂

∂t

)
φ + e

∂φ

∂t
− e

c
∂A
∂t
· v

= −ev ·∇φ− e
c

∂A
∂t
· v

= +ev ·
(
−∇φ− 1

c
∂A
∂t

)
.

This is just
d
dt
(
γmc2) = ev · E, (12)

and we find the rate of change of energy term of our four momentum equation

d
dt

(
E
c

, p
)
= e

(v
c
· E, E +

v
c
× B

)
. (13)

Specified explicilty, this is

d
dt

(γm (c, v)) = e
(v

c
· E, E +

v
c
× B

)
. (14)

3



While this was the result I was looking for, once written it now stands out as incomplete rela-
tivistically. We have an equation that specifies the time derivative of a four vector. What about the
spatial derivatives? We really ought to have a rank two tensor result, and not a four vector result
relating the fields and the energy and momentum of the particle. The Lorentz force equation, even
when expanded to four vector form, does not seem complete relativistically.

With ui = dxi/ds, we can rewrite 14 as

∂0(γmui) = e
(v

c
· E, E +

v
c
× B

)
. (15)

If we were to vary the action with respect to a spatial coordinate instead of time, we should
end up with a similar equation of the form ∂i(γmui) =?. Having been pointed at the explicitly
invariant result, I wonder if those equations are independent. Let’s defer exploring this, until at
least after calculating the result using a four vector form of the action.

3. Four vector approach.

3.1. The Lorentz force derivation from invariant action.

We can rewrite our action, parameterizing with proper time. This is

S = −mc2
∫

dτ

√
dxi

dτ

dxi

dτ
− e

c

∫
dτAi

dxi

dτ
(16)

Writing ẋi = dxi/dτ, our Lagrangian is then

L(xi, ẋi, τ) = −mc2
√

ẋi ẋi −
e
c

Ai ẋi (17)

The Euler-Lagrange equations take the form

∂L
∂xi =

d
dτ

∂L
∂ẋi . (18)

Our gradient and conjugate momentum are

∂L
∂xi = −

e
c

∂Aj

∂xi ẋj (19)

∂L
∂ẋi = −mẋi −

e
c

Ai. (20)

With our convective derivative taking the form

d
dτ

= ẋi ∂

∂xi , (21)
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we have

m
d2xi

dτ2 =
e
c

∂Aj

∂xi ẋj − e
c

ẋj ∂Ai

∂xj

=
e
c

ẋj
(

∂Aj

∂xi −
∂Ai

∂xj

)
=

e
c

ẋj (∂i Aj − ∂j Ai
)

=
e
c

ẋjFij

Our Prof wrote this with indexes raised and lowered respectively

m
d2xi

dτ2 =
e
c

Fij ẋj. (22)

Following the text [2] he also writes ui = dxi/ds = (1/c)dxi/dτ, and in that form we have

d(mcui)

ds
=

e
c

Fijuj. (23)

3.2. Expressed explicitly in terms of the three vector fields.

3.2.1 The power term.

From 23, lets extract the i = 0 term, relating the rate of change of energy to the field and particle
velocity. With

d
dτ

=
dt
dτ

d
dt

= γ
d
dt

, (24)

we have

d(mγ dxi

dt )

dt
=

e
c

Fij dxj

dt
. (25)

For i = 0 we have

F0j dxj

dt
= −F0α dxα

dt
(26)

That component of the field is

Fα0 = ∂α A0 − ∂0Aα

= − ∂φ

∂xα
− 1

c
∂Aα

∂t

=

(
−∇φ− 1

c
∂A
∂t

)α

.

This verifies the result obtained with considerably more difficulty, using the Hamiltonian like
conservation relation obtained for a time translation of a time dependent Lagrangian

d(mγc2)

dt
= eE · v. (27)

5



3.2.2 The Lorentz force terms.

Let’s also verify the signs for the i > 0 terms. For those we have

d(mγ dxα

dt )

dt
=

e
c

Fαj dxj

dt

=
e
c

Fα0 dx0

dt
+

e
c

Fαβ dxβ

dt
= eEα −∑

αβ

e
c

(
∂α Aβ − ∂β Aα

)
vβ

Since we have only spatial indexes left, lets be sloppy and imply summation over all repeated
indexes, even if unmatched upper and lower. This leaves us with

−
(

∂α Aβ − ∂β Aα
)

vβ =
(

∂α Aβ − ∂β Aα
)

vβ

= εαβγBγ

With the vβ contraction we have

εαβγBγvβ = (v× B)α, (28)

leaving our first result obtained by the time parameterization of the Lagrangian

d(mγv)
dt

= e
(

E +
v
c
× B

)
. (29)

This now has a nice symmetrical form. It’s slightly disappointing not to have a rank two tensor
on the LHS like we have with the symmetric stress tensor with Poynting Vector and energy and
other similar terms that relates field energy and momentum with E · J and the charge density
equivalents of the Lorentz force equation. Is there such a symmetric relationship for particles too?
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