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1. Motivation.

In class it was mentioned that to deal with perturbation around a degenerate energy eigen-
value, we needed to diagonalize the perturbing Hamiltonian. I didn’t follow those arguments
completely, and I’d like to revisit those here.

2. A four state Hamiltonian.

Problem set 3, problem 1, was to calculate the energy eigenvalues for the following Hamilto-
nian

H = H0 + λH′ (1)

H0 =


a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 c

 (2)

H′ =


α 0 ν η
0 β 0 µ
ν∗ 0 γ 0
η∗ µ∗ 0 δ

 (3)

This is more complicated that the two state problem that are solved exactly in §13.1.1 in the
text [1], but differs from the (possibly) infinite dimensional problem that was covered in class.
Unfortunately, the solution provided to this problem didn’t provide the illumination I expected,
so let’s do it again, calculating the perturbed energy eigenvalues for the degenerate levels, from
scratch.
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Can we follow the approach used in the text for the two (only) state problem. For the two state
problem, it was assumed that the perturbed solution could be expressed as a superposition of the
two states that formed the basis for the unperturbed Hilbert space. That is

|ψ〉 = m |1〉+ n |2〉 (4)

For the two state problem, assuming that the perturbed energy eigenvalue is E, and the unper-
turbed energy eigenvalue is E0 we find

0 = (H − E) |ψ〉
= (H0 + λH′) |ψ〉 − E |ψ〉
= (H0 + λH′)(m |1〉+ n |2〉)− E(m |1〉+ n |2〉)
= λH′(m |1〉+ n |2〉)− E0(m |1〉+ n |2〉)

= (−E0 + λH′)
[
|1〉 |2〉

] [m
n

]
Left multiplying by the brakets we find

0 =

[
〈1|
〈2|

]
(H − E) |ψ〉

=

(
(E0 − E)I + λ

[
〈1|H′ |1〉 〈1|H′ |2〉
〈2|H′ |1〉 〈2|H′ |2〉

]) [
m
n

]
Or (

(E0 − E)I + λ
[

H′ij
]) [m

n

]
= 0. (5)

Observe that there was no assumption about the dimensionality of H0 and H′ here, just that
the two degenerate energy levels had eigenvalues E0 and a pair of eigenkets |1〉 and |2〉 such that
H0 |i〉 = E0 |i〉 , i ∈ [1, 2]. It’s clear that we can use a similar argument for any degeneracy degree.
It’s also clear how to proceed, since we have what almost amounts to a characteristic equation for
the degenerate subspace of Hilbert space for the problem.

Because H′ is Hermitian, a diagonalization

H′ = U∗DU (6)

can be found. To solve for E we can take the determinant of the matrix factor of 5, and because
I = U∗U we have

0 =
∣∣(E0 − E)U∗ IU + λU∗DU

∣∣
=
∣∣U∗∣∣ ∣∣(E0 − E)I + λD

∣∣ ∣∣U∣∣
=

∣∣∣∣E0 − E + λd1 0
0 E0 − E + λd2

∣∣∣∣
= (E0 − E + λd1)(E0 − E + λd2)
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So our energy eigenvalues associated with the perturbed state are (exactly)

E = E0 + λd1, E0 + λd2. (7)

It’s a bit curious seeming that only the energy eigenvalues associated with the degeneracy play
any part in this result, but there is some intuitive comfort in this idea. Without the perturbation,
we can’t do an energy measurement that would distinguish one or the other of the eigenkets for
the degenerate energy level, so it doesn’t seem unreasonable that a perturbed energy level close
to the original can be formed by superposition of these two states, and thus the perturbed energy
eigenvalue for the new system would then be related to only those degenerate levels.

Observe that in the problem set three problem we had a diagonal initial Hamiltonian H0, that
doesn’t have an impact on the argument above, since that portion of the Hamiltonian only has a
diagonal contribution to the result found in 5, since the identity H0 |i〉 = c |i〉 , i ∈ [3, 4] removes
any requirement to know the specifics of that portion of the matrix element of H0.

3. Generalizing slightly.

Let’s work with a system that has kets using an explicit degeneracy index

H0 |mαm〉 = E0
m |mαm〉 , αm = 1, · · · , γm, m ∈ [1, N] (8)

Example:
|mαm〉 ∈ |11〉

|21〉 , |22〉
|31〉
|41〉 , |42〉 , |43〉 .

(9)

Again we seek to find the energy eigenvalues of the new system

H = H0 + λH′. (10)

For any m with associated with a degeneracy (γm > 1) we can calculate the subspace diago-
nalization [

〈mi|H′ |mj〉
]
= UmDmU†

m, (11)

where

UmU†
m = 1, (12)

and Dm is diagonal

Dm =
[
δijE′m,i

]
. (13)

This isn’t a diagonalizing transformation in the usual sense. Putting it together into block
matrix form, we can write
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U =


U1

U2
. . .

UN

 (14)

and find that a similarity transformation using this change of basis matrix puts all the block
matrices along the diagonal into diagonal form, but leaves the rest possibly non-zero

U†
[
〈mαmi |H′ |mj〉

∣∣∣mαmj

〉]
U =


D1 x x x
x D2 x x

x x
. . . x

x x x DN

 (15)

3.1. A five level system with two pairs of degenerate levels.

Let’s do this explicitly using a specific degeneracy example, supposing that we have a non-
degenerate ground state, and two pairs doubly degenerate next energy levels. That is

|mαm〉 ∈ |11〉
|21〉 , |22〉
|31〉 , |32〉

(16)

Our change of basis matrix is

U =


1 0 0 0 0
0
0

U2
0 0
0 0

0
0

0 0
0 0

U3

 (17)

We’d like to calculate

U†H′U (18)

Let’s write this putting row and column range subscripts on our matrices to explicitly block
them into multiplication compatible sized pieces

U =

 I11,11 011,23 011,45
023,11 U23,23 023,45
045,11 045,23 U45,45

 (19)

H′ =

H′11,11 H′11,23 H′11,45
H′23,11 H′23,23 H′23,45
H′45,11 H′45,23 H′45,45

 (20)

(21)
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The change of basis calculation then becomes

U†H′U =

 I11,11 011,23 011,45
023,11 U†

23,23 023,45
045,11 045,23 U†

45,45

H′11,11 H′11,23 H′11,45
H′23,11 H′23,23 H′23,45
H′45,11 H′45,23 H′45,45

 I11,11 011,23 011,45
023,11 U23,23 023,45
045,11 045,23 U45,45


=

 I11,11 011,23 011,45
023,11 U†

23,23 023,45
045,11 045,23 U†

45,45

H′11,11 H′11,23U23,23 H′11,45U45,45
H′23,11 H′23,23U23,23 H′23,45U45,45
H′45,11 H′45,23U23,23 H′45,45U45,45



=


H′11,11 H′11,23U23,23 H′11,45U45,45

U†
23,23H′23,11 U†

23,23H′23,23U23,23 U†
23,23H′23,45U45,45

U†
45,45H′45,11 U†

45,45H′45,23U23,23 U†
45,45H′45,45U45,45


We see that we end up with explicitly diagonal matrices along the diagonal blocks, but prod-

ucts that are otherwise everywhere else.
In the new basis our kets become ∣∣mα′m

〉
= U† |mαm〉 (22)

Suppose we calculate this change of basis representation for |21〉 (we’ve implicitly assumed
above that our original basis had the ordering {|11〉 |21〉 , |22〉 , |31〉 , |32〉}). We find

∣∣21′
〉
= U∗ |21〉

=

1 0 0
0 U∗2 0
0 0 U∗3




0
1
0
0
0


With

U2 =

[
U2,11 U2,12
U2,21 U2,22

]
(23)

U†
2 =

[
U∗2,11 U∗2,21
U∗2,12 U∗2,22

]
(24)

We find ∣∣21′
〉
= U∗

∣∣21′
〉

=


0

U∗2,11
U∗2,12

0
0

 = U∗2,11 |21〉+ U∗2,12 |22〉
(25)
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3.2. Energy eigenvalues of the unperturbed Hamiltonian in the new basis.

Generalizing this, it is clear that for a given degeneracy level, the transformed kets in the new
basis are superposition of only the kets associated with that degenerate level (and the kets for the
non-degenerate levels are left as is).

Even better, we have for all |mα′m〉 = U† |mαm〉 that |mα′m〉 remain eigenkets of the unperturbed
Hamiltonian. We see that by computing the matrix element of our Hamiltonian in the full basis.

Writing

F = U†H′U, (26)

or
H′ = UFU†, (27)

where F has been shown to have diagonal block diagonals, we can write

H = H0 + λUFU†

= UU†H0UU† + λUFU†

= U
(

U†H0U + λF
)

U†

So in the |mα′m〉 basis, our Hamiltonian’s matrix element is

H → U†H0U + λF (28)

When λ = 0, application of this Hamiltonian to the new basis kets gives

H0
∣∣mα′

〉
= U†H0UU† |mα〉
= U†H0 |mα〉
= U†E0

m |mα〉

= E0
m

(
U† |mα〉

)

But this is just

H0
∣∣mα′

〉
= E0

m
∣∣mα′

〉
, (29)

a statement that the |mα′〉 are still the energy eigenkets for the unperturbed system. This
matches our expectations since we’ve seen that these differ from the original basis elements only
for degenerate energy levels, and that these new basis elements are superpositions of only the kets
for their respective degeneracy levels.

References

[1] BR Desai. Quantum mechanics with basic field theory. Cambridge University Press, 2009. 2

6


