
PHY456H1F: Quantum Mechanics II. Lecture 11 (Taught by Prof J.E.
Sipe). Spin and Spinors

Originally appeared at:
http://sites.google.com/site/peeterjoot/math2011/qmTwoL11.pdf

Peeter Joot — peeter.joot@gmail.com
Oct 17, 2011 qmTwoL11.tex

Contents

1 Disclaimer. 1

2 Generators. 1
2.1 Example: Time translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Example: Spatial translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.2.1 Exponential commutation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2.2 Translating a ket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Example: Spatial rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3.1 Rotating a ket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Generalizations. 5
3.1 Many component wave functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 A classical analogy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1. Disclaimer.

Peeter’s lecture notes from class. May not be entirely coherent.

2. Generators.

Covered in §26 of the text [1].

2.1. Example: Time translation

|ψ(t)〉 = e−iHt/h̄|ψ(0)〉. (1)

The Hamiltonian “generates” evolution (or translation) in time.

2.2. Example: Spatial translation

|r + a〉 = e−ia·P/h̄|r〉. (2)

P is the operator that generates translations. Written out, we have
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Figure 1: Vector translation.

e−ia·P/h̄ = e−i(ax Px+ayPy+azPz)/h̄

= e−iax Px/h̄e−iayPy/h̄e−iazPz/h̄,
(3)

where the factorization was possible because Px, Py, and Pz commute[
Pi, Pj

]
= 0, (4)

for any i, j (including i = i as I dumbly questioned in class ... this is a commutator, so
[
Pi, Pj

]
=

PiPi − PiPi = 0).
The fact that the Pi commute means that successive translations can be done in any orderr and

have the same result.
In class we were rewarded with a graphic demo of translation component commutation as

Professor Sipe pulled a giant wood carving of a cat (or tiger?) out from beside the desk and
proceeded to translate it around on the desk in two different orders, with the cat ending up in the
same place each time.

2.2.1 Exponential commutation.

Note that in general

eA+B 6= eAeB, (5)

unless [A, B] = 0. To show this one can compare

eA+B = 1 + A + B +
1
2
(A + B)2 + · · ·

= 1 + A + B +
1
2
(A2 + AB + BA + B2) + · · ·

(6)

and

eAeB =

(
1 + A +

1
2

A2 + · · ·
)(

1 + B +
1
2

B2 + · · ·
)

= 1 + A + B +
1
2
(A2 + 2AB + B2) + · · ·

(7)

Comparing the second order (for example) we see that we must have for equality
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AB + BA = 2AB, (8)

or

BA = AB, (9)

or
[A, B] = 0 (10)

2.2.2 Translating a ket

If we consider the quantity

e−ia·P/h̄|ψ〉 = |ψ′〉, (11)

does this ket “translated” by a make any sense? The vector a lives in a 3D space and our ket
|ψ〉 lives in Hilbert space. A quantity like this deserves some careful thought and is the subject of
some such thought in the Interpretations of Quantum mechanics course. For now, we can think of
the operator and ket as a “gadget” that prepares a state.

A student in class pointed out that |ψ〉 can be dependent on many degress of freedom, for
example, the positions of eight different particles. This translation gadget in such a case acts on
the whole kit and kaboodle.

Now consider the matrix element 〈
r|ψ′

〉
= 〈r|e−ia·P/h̄|ψ〉. (12)

Note that

〈r|e−ia·P/h̄ =
(

eia·P/h̄|r〉
)†

= (|r− a〉)† ,

so 〈
r|ψ′

〉
= 〈r− a|ψ〉 , (13)

or

ψ′(r) = ψ(r− a) (14)

This is what we expect of a translated function, as illustrated in figure (2)

2.3. Example: Spatial rotation

We’ve been introduced to the angular momentum operator

L = R× P, (15)
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Figure 2: Active spatial translation.

where

Lx = YPz − ZPy (16)
Ly = ZPx − XPz (17)
Lz = XPy −YPx. (18)

We also found that [
Li, Lj

]
= ih̄ ∑

k
εijkLk. (19)

These non-zero commutators show that the components of angular momentum do not com-
mute.

Define

|R(r)〉 = e−iθn̂·L/h̄|r〉. (20)

This is the vecvtor that we get by actively rotating the vector r by an angule θ counterclockwise
about n̂, as in figure (3)

Figure 3: Active vector rotations

An active rotation rotates the vector, leaving the coordinate system fixed, whereas a passive
rotation is one for which the coordinate system is rotated, and the vector is left fixed.

Note that rotations do not commute. Suppose that we have a pair of rotations as in figure (4)
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Figure 4: A example pair of non-commuting rotations.

Again, we get the graphic demo, with Professor Sipe rotating the big wooden cat sculpture.
Did he bring that in to class just to make this point (too bad I missed the first couple minutes of
the lecture).

Rather amusingly, he points out that most things in life do not commute. We get much different
results if we apply the operations of putting water into the teapot and turning on the stove in
different orders.

2.3.1 Rotating a ket

With a rotation gadget

|ψ′〉 = e−iθn̂·L/h̄|ψ〉, (21)

we can form the matrix element 〈
r|ψ′

〉
= 〈r|e−iθn̂·L/h̄|ψ〉. (22)

In this we have

〈r|e−iθn̂·L/h̄ =
(

eiθn̂·L/h̄|r〉
)†

=
(
|R−1(r)〉

)†
,

so 〈
r|ψ′

〉
=
〈
R−1(r)|ψ′

〉
, (23)

or
ψ′(r) = ψ(R−1(r)) (24)

3. Generalizations.

Recall what you did last year, where H, P, and L were defined mechaniccally. We found

• H generates time evolution (or translation in time).

• P generates spatial translation.
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• L generates spatial rotation.

For our mechanical definitions we have[
Pi, Pj

]
= 0, (25)

and [
Li, Lj

]
= ih̄ ∑

k
εijkLk. (26)

These are the relations that show us the way translations and rotations combine. We want to
move up to a higher plane, a new level of abstraction. To do so we define H as the operator that
generates time evolution. If we have a theory that covers the behaviour of how anything evolves
in time, H encodes the rules for this time evolution.

Define P as the operator that generates translations in space.
Define J as the operator that generates rotations in space.
In order that these match expectations, we require[

Pi, Pj
]
= 0, (27)

and [
Ji, Jj

]
= ih̄ ∑

k
εijk Jk. (28)

In the simple theory of a spinless particle we have

J ≡ L = R× P. (29)

We actually need a generalization of this since this is, in fact, not good enought, even for low
energy physics.

3.1. Many component wave functions.

We are free to construct tuples of spatial vector functions like[
ΨI(r, t)
ΨI I(r, t)

]
, (30)

or  ΨI(r, t)
ΨI I(r, t)
ΨI I I(r, t)

 , (31)

etc.
We will see that these behave qualitatively different than one component wave functions. We

also don’t have to be considering multiple particle wave functions, but just one particle that re-
quires three functions in R3 to describe it (ie: we are moving in on spin).

Question: Do these live in the same vector space?

Answer: We will get to this.
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3.1.1 A classical analogy.

“There’s only bad analogies, since if the are good they’d be describing the same thing. We can
however, produce some useful bad analogies”

1. A temperature field

T(r) (32)

2. Electric field Ex(r)
Ey(r)
Ez(r)

 (33)

These behave in a much different way. If we rotate a scalar field like T(r) as in figure (5)

Figure 5: Rotated temperature (scalar) field

Suppose we have a temperature field generated by, say, a match. Rotating the match above,
we have

T′(r) = T(R−1(r)). (34)

Compare this to the rotation of an electric field, perhaps one produced by a capacitor, as in
figure (6)

Is it true that we have Ex(r)
Ey(r)
Ez(r)

 ?
=

Ex(R−1(r))
Ey(R−1(r))
Ez(R−1(r))

 (35)

No. Because the components get mixed as well as the positions at which those components are
evaluated.

We will work with many component wave functions, some of which will behave like vectors,
and will have to develope the methods and language to tackle this.
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Figure 6: Rotating a capacitance electric field
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