PHY456H1F: Quantum Mechanics II. Lecture 14 (Taught by Prof J.E. Sipe). Representation of two state kets and Pauli spin matrices.

Originally appeared at:

http://sites.google.com/site/peeterjoot/math2011/qmTwoL14.pdf

Peeter Joot — peeter.joot@gmail.com

Oct 26, 2011 qmTwoL14.tex

Contents

1	Disclaimer.	1
	Representation of kets. 2.1 A simple example	1
3	Representation of two state kets	5
4	Pauli spin matrices. 4.1 Interesting properties	6
1.	Disclaimer.	
	Peeter's lecture notes from class. May not be entirely coherent.	

2. Representation of kets.

Reading: §5.1 - §5.9 and §26 in [1].

We found the representations of the spin operators

$$S_x \to \frac{\hbar}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \tag{1}$$

$$S_y \to \frac{\hbar}{2} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \tag{2}$$

$$S_z \to \frac{\hbar}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \tag{3}$$

How about kets? For example for $|\chi\rangle \in H_s$

$$|\chi\rangle \to \begin{bmatrix} \langle +|\chi\rangle \\ \langle -|\chi\rangle \end{bmatrix}$$
, (4)

and

$$|+\rangle \rightarrow \begin{bmatrix} 1\\0 \end{bmatrix}$$
 (5)

$$|0\rangle \to \begin{bmatrix} 0\\1 \end{bmatrix} \tag{6}$$

So, for example

$$S_y \left| + \right\rangle \to \frac{\hbar}{2} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{i\hbar}{2} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 (7)

Kets in $H_o \otimes H_s$

$$|\psi\rangle \rightarrow \begin{bmatrix} \langle \mathbf{r} + |\psi\rangle \\ \langle \mathbf{r} - |\psi\rangle \end{bmatrix} = \begin{bmatrix} \psi_{+}(\mathbf{r}) \\ \psi_{-}(\mathbf{r}) \end{bmatrix}.$$
 (8)

This is a "spinor" Put

$$\langle \mathbf{r} \pm | \psi \rangle = \psi_{\pm}(\mathbf{r})$$

$$= \psi_{+} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \psi_{-} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
(9)

with

$$\langle \psi | \psi \rangle = 1 \tag{10}$$

Use

$$I = I_{o} \otimes I_{s}$$

$$= \int d^{3}\mathbf{r} |\mathbf{r}\rangle \langle \mathbf{r}| \otimes (|+\rangle \langle +|+|-\rangle \langle -|)$$

$$= \int d^{3}\mathbf{r} |\mathbf{r}\rangle \langle \mathbf{r}| \otimes \sum_{\sigma=\pm} |\sigma\rangle \langle \sigma|$$

$$= \sum_{\sigma=\pm} \int d^{3}\mathbf{r} |\mathbf{r}\sigma\rangle \langle \mathbf{r}\sigma|$$
(11)

So

$$\langle \psi | I | \psi \rangle = \sum_{\sigma = \pm} \int d^{3} \mathbf{r} \langle \psi | \mathbf{r} \sigma \rangle \langle \mathbf{r} \sigma | \psi \rangle$$

$$= \int d^{3} \mathbf{r} \left(|\psi_{+}(\mathbf{r})|^{2} + |\psi_{-}(\mathbf{r})|^{2} \right)$$
(12)

Alternatively

$$|\psi\rangle = I |\psi\rangle$$

$$= \int d^{3}\mathbf{r} \sum_{\sigma=\pm} |\mathbf{r}\sigma\rangle \langle \mathbf{r}\sigma|\psi\rangle$$

$$= \sum_{\sigma=\pm} \left(\int d^{3}\mathbf{r}\psi_{\sigma}(\mathbf{r}) \right) |\mathbf{r}\sigma\rangle$$

$$= \sum_{\sigma=\pm} \left(\int d^{3}\mathbf{r}\psi_{\sigma}(\mathbf{r}) |\mathbf{r}\rangle \right) \otimes |\sigma\rangle$$
(13)

In braces we have a ket in H_o , let's call it

$$|\psi_{\sigma}\rangle = \int d^3 \mathbf{r} \psi_{\sigma}(\mathbf{r}) |\mathbf{r}\rangle$$
, (14)

then

$$|\psi\rangle = |\psi_{+}\rangle |+\rangle + |\psi_{-}\rangle |-\rangle \tag{15}$$

where the direct product \otimes is implied.

We can form a ket in H_s as

$$\langle \mathbf{r} | \psi \rangle = \psi_{+}(\mathbf{r}) | + \rangle + \psi_{-}(\mathbf{r}) | - \rangle \tag{16}$$

An operator O_o which acts on H_o alone can be promoted to $O_o \otimes I_s$, which is now an operator that acts on $H_o \otimes H_s$. We are sometimes a little cavalier in notation and leave this off, but we should remember this.

$$O_{o} |\psi\rangle = (O_{o} |\psi+\rangle) |+\rangle + (O_{o} |\psi+\rangle) |+\rangle \tag{17}$$

and likewise

$$O_{s} |\psi\rangle = |\psi+\rangle (O_{s} |+\rangle) + |\psi-\rangle (O_{s} |-\rangle)$$
(18)

and

$$O_o O_s |\psi\rangle = (O_o |\psi+\rangle)(O_s |+\rangle) + (O_o |\psi-\rangle)(O_s |-\rangle)$$
(19)

Suppose we want to rotate a ket, we do this with a full angular momentum operator

$$e^{-i\theta\hat{\mathbf{n}}\cdot\mathbf{J}/\hbar}|\psi\rangle = e^{-i\theta\hat{\mathbf{n}}\cdot\mathbf{L}/\hbar}e^{-i\theta\hat{\mathbf{n}}\cdot\mathbf{S}/\hbar}|\psi\rangle$$
(20)

(recalling that **L** and **S** commute) So

$$e^{-i\theta\hat{\mathbf{n}}\cdot\mathbf{J}/\hbar}|\psi\rangle = (e^{-i\theta\hat{\mathbf{n}}\cdot\mathbf{L}/\hbar}|\psi+\rangle)(e^{-i\theta\hat{\mathbf{n}}\cdot\mathbf{S}/\hbar}|+\rangle) + (e^{-i\theta\hat{\mathbf{n}}\cdot\mathbf{L}/\hbar}|\psi-\rangle)(e^{-i\theta\hat{\mathbf{n}}\cdot\mathbf{S}/\hbar}|-\rangle)$$
(21)

2.1. A simple example.

$$|\psi\rangle = |\psi_{+}\rangle |+\rangle + |\psi_{-}\rangle |-\rangle \tag{22}$$

Suppose

$$|\psi_{+}\rangle = \alpha |\psi_{0}\rangle \tag{23}$$

$$|\psi_{-}\rangle = \beta |\psi_{0}\rangle \tag{24}$$

where

$$|\alpha|^2 + |\beta|^2 = 1 \tag{25}$$

Then

$$|\psi\rangle = |\psi_0\rangle |\chi\rangle \tag{26}$$

where

$$|\chi\rangle = \alpha |+\rangle + \beta |-\rangle \tag{27}$$

for

$$\langle \psi | \psi \rangle = 1, \tag{28}$$

$$\langle \psi_0 | \psi_0 \rangle \langle \chi | \chi \rangle = 1$$
 (29)

so

$$\langle \psi_0 | \psi_0 \rangle = 1 \tag{30}$$

We are going to concentrate on the unentagled state of 26.

• How about with

$$|\alpha|^2 = 1, \beta = 0 \tag{31}$$

 $|\chi\rangle$ is an eigenket of S_z with eigenvalue $\hbar/2$.

$$|\beta|^2 = 1, \alpha = 0 \tag{32}$$

 $|\chi\rangle$ is an eigenket of S_z with eigenvalue $-\hbar/2$.

• What is $|\chi\rangle$ if it is an eigenket of $\hat{\mathbf{n}} \cdot \mathbf{S}$?

FIXME: F1: standard spherical projection picture, with $\hat{\bf n}$ projected down onto the x, y plane at angle ϕ and at an angle θ from the z axis.

The eigenvalues will still be $\pm \hbar/2$ since there is nothing special about the *z* direction.

$$\hat{\mathbf{n}} \cdot \mathbf{S} = n_x S_x + n_y S_y + n_z S_z$$

$$\rightarrow \frac{\hbar}{2} \begin{bmatrix} n_z & n_x - i n_y \\ n_x + i n_y & -n_z \end{bmatrix}$$

$$= \frac{\hbar}{2} \left[\cos \theta & \sin \theta e^{-i\phi} \sin \theta e^{i\phi} & -\cos \theta \right]$$
(33)

To find the eigenkets we diagonalize this, and we find representations of the eigenkets are

$$|\hat{\mathbf{n}}+\rangle \to \begin{bmatrix} \cos\left(\frac{\theta}{2}\right)e^{-i\phi/2} \\ \sin\left(\frac{\theta}{2}\right)e^{i\phi/2} \end{bmatrix}$$
 (34)

$$|\hat{\mathbf{n}}-\rangle \to \begin{bmatrix} -\sin\left(\frac{\theta}{2}\right)e^{-i\phi/2} \\ \cos\left(\frac{\theta}{2}\right)e^{i\phi/2} \end{bmatrix},$$
 (35)

with eigenvalues $\hbar/2$ and $-\hbar/2$ respectively.

So in the abstract notation, tossing the specific representation, we have

$$|\hat{\mathbf{n}}+\rangle \to \cos\left(\frac{\theta}{2}\right)e^{-i\phi/2}|+\rangle \sin\left(\frac{\theta}{2}\right)e^{i\phi/2}|-\rangle$$
 (36)

$$|\hat{\mathbf{n}}-\rangle \to -\sin\left(\frac{\theta}{2}\right)e^{-i\phi/2}|+\rangle\cos\left(\frac{\theta}{2}\right)e^{i\phi/2}|-\rangle$$
 (37)

3. Representation of two state kets

Every ket

$$|\chi\rangle \to \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \tag{38}$$

for which

$$|\alpha|^2 + |\beta|^2 = 1 \tag{39}$$

can be written in the form 34 for some θ and ϕ , neglecting an overall phase factor. For any ket in H_s , that ket is "spin up" in some direction.

FIXME: show this.

4. Pauli spin matrices.

It is useful to write

$$S_x = \frac{\hbar}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \equiv \frac{\hbar}{2} \sigma_x \tag{40}$$

$$S_y = \frac{\hbar}{2} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \equiv \frac{\hbar}{2} \sigma_y \tag{41}$$

$$=\frac{\hbar}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \equiv \frac{\hbar}{2} \sigma_z \tag{42}$$

where

$$\sigma_{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \tag{43}$$

$$\sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \tag{44}$$

$$\sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \tag{45}$$

These are the Pauli spin matrices.

4.1. Interesting properties.

•

$$[\sigma_i, \sigma_i] = \sigma_i \sigma_i + \sigma_j \sigma_i = 0, \quad \text{if } i < j$$
 (46)

•

$$\sigma_x \sigma_y = i \sigma_z \tag{47}$$

(and cyclic permutations)

•

$$Tr(\sigma_i) = 0 (48)$$

•

$$(\hat{\mathbf{n}} \cdot \boldsymbol{\sigma})^2 = \sigma_0 \tag{49}$$

where

$$\hat{\mathbf{n}} \cdot \boldsymbol{\sigma} \equiv n_x \sigma_x + n_y \sigma_y + n_z \sigma_z, \tag{50}$$

and

$$\sigma_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \tag{51}$$

(note $Tr(\sigma_0) \neq 0$)

•

$$\left[\sigma_{i},\sigma_{i}\right]=2\delta_{ij}\sigma_{0}\tag{52}$$

$$\left[\sigma_x, \sigma_y\right] = 2i\sigma_z \tag{53}$$

(and cyclic permutations of the latter).

Can combine these to show that

$$(\mathbf{A} \cdot \boldsymbol{\sigma})(\mathbf{B} \cdot \boldsymbol{\sigma}) = (\mathbf{A} \cdot \mathbf{B})\sigma_0 + i(\mathbf{A} \times \mathbf{B}) \cdot \boldsymbol{\sigma}$$
 (54)

where **A** and **B** are vectors (or more generally operators that commute with the σ matrices).

•

$$Tr(\sigma_i \sigma_j) = 2\delta_{ij} \tag{55}$$

•

$$Tr(\sigma_{\alpha}\sigma_{\beta}) = 2\delta_{\alpha\beta},\tag{56}$$

where α , $\beta = 0$, x, y, z

Note that any complext matrix *M* can be written as

$$M = \sum_{\alpha} m_{\alpha} \sigma_{\alpha}$$

$$= \begin{bmatrix} m_0 + m_z & m_x - im_y \\ m_x + im_y & m_0 - m_z \end{bmatrix}$$
(57)

for any four complex numbers m_0, m_x, m_y, m_z where

$$m_{\beta} = \frac{1}{2} \operatorname{Tr}(M\sigma_{\beta}). \tag{58}$$

References

[1] BR Desai. Quantum mechanics with basic field theory. Cambridge University Press, 2009. 2