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1. Disclaimer.

Peeter’s lecture notes from class. May not be entirely coherent.

2. Scattering cross sections.

READING: §20 [1]
Recall that we are studing the case of a potential that is zero outside of a fixed bound, V(r) = 0

for r > r0, as in figure (1)

Figure 1: Bounded potential.

and were looking for solutions to Schrödinger’s equation
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− h̄2

2µ
∇2ψk(r) + V(r)ψk(r) =

h̄2k2

2µ
ψk(r), (1)

in regions of space, where r > r0 is very large. We found

ψk(r) ∼ eik·r +
eikr

r
fk(θ, φ). (2)

For r ≤ r0 this will be something much more complicated.
To study scattering we’ll use the concept of probability flux as in electromagnetism

∇ · j + ρ̇ = 0 (3)

Using

ψ(r, t) = ψk(r)∗ψk(r) (4)

we find

j(r, t) =
h̄

2µi

(
ψk(r)∗∇ψk(r)− (∇ψ∗k(r))ψk(r)

)
(5)

when

− h̄2

2µ
∇2ψk(r) + V(r)ψk(r) = ih̄

∂ψk(r)
∂t

(6)

In a fashion similar to what we did in the 1D case, let’s suppose that we can write our wave
function

ψ(r, tinitial) =
∫

d3kα(k, tinitial)ψk(r) (7)

and treat the scattering as the scattering of a plane wave front (idealizing a set of wave packets)
off of the object of interest as depicted in figure (2)

We assume that our incoming particles are sufficiently localized in k space as depicted in the
idealized representation of figure (3)

we assume that α(k, tinitial) is localized.

ψ(r, tinitial) =
∫

d3k
(

α(k, tinitial)eikzz + α(k, tinitial)
eikr

r
fk(θ, φ)

)
(8)

We suppose that

α(k, tinitial) = α(k)e−ih̄k2tinitial/2µ (9)

where this is chosen (α(k, tinitial) is built in this fashion) so that this is non-zero for z large in
magnitude and negative.

This last integral can be approximated∫
d3kα(k, tinitial)

eikr

r
fk(θ, φ) ≈ fk0(θ, φ)

r

∫
d3kα(k, tinitial)eikr

→ 0
(10)
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Figure 2: plane wave front incident on particle

Figure 3: k space localized wave packet
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This is very much like the 1D case where we found no reflected component for our initial time.
We’ll normally look in a locality well away from the wave front as indicted in figure (4)

Figure 4: point of measurement of scattering cross section

There are situations where we do look in the locality of the wave front that has been scattered.

2.1.

Our income wave is of the form

ψi = Aeikze−ih̄k2t/2µ (11)

Here we’ve made the approximation that k = |k| ∼ kz. We can calculate the probability current

j = ẑ
h̄k
µ

A (12)

(notice the v = p/m like term above, with p = h̄k).
For the scattered wave (dropping A factor)

j =
h̄

2µi

(
f ∗k(θ, φ)

e−ikr

r
∇
(

fk(θ, φ)
eikr

r

)
−∇

(
f ∗k(θ, φ)

e−ikr

r

)
fk(θ, φ)

eikr

r

)
≈ h̄

2µi

(
f ∗k(θ, φ)

e−ikr

r
ikr̂ fk(θ, φ)

eikr

r
− f ∗k(θ, φ)

e−ikr

r
(−ikr̂) fk(θ, φ)

eikr

r

)
We find that the radial portion of the current density is

r̂ · j = h̄
2µi
| f |2 2ik

r2

=
h̄k
µ

1
r2 | f |

2,
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and the flux through our element of solid angle is

r̂dA · j = probability
unit area per time

× area

=
probability
unit time

=
h̄k
µ

| fk(θ, φ)|2

r2 r2dΩ

=
h̄k
µ
| fk(θ, φ)|2dΩ

= jincoming | fk(θ, φ)|2︸ ︷︷ ︸
dσ/dΩ

dΩ.

We identify the scattering cross section above

dσ

dΩ
= | fk(θ, φ)|2 (13)

σ =
∫
| fk(θ, φ)|2dΩ (14)

We’ve been somewhat unrealistic here since we’ve used a plane wave approximation, and can
as in figure (5)

Figure 5: Plane wave vs packet wave front

will actually produce the same answer. For details we are referred to [2] and [3].

2.2. Working towards a solution

We’ve done a bunch of stuff here but are not much closer to a real solution because we don’t
actually know what fk is.

Let’s write Schrödinger
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− h̄2

2µ
∇2ψk(r) + V(r)ψk(r) =

h̄2k2

2µ
ψk(r), (15)

instead as

(∇2 + k2)ψk(r) = s(r) (16)

where

s(r) =
2µ

h̄
V(r)ψk(r) (17)

where s(r) is really the particular solution to this differential problem. We want

ψk(r) = ψ
homogeneous
k (r) + ψ

particular
k (r) (18)

and

ψ
homogeneous
k (r) = eik·r (19)
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