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1. Charged particle in a circle.

From the 2008 PHY353 exam, given a particle of charge q moving in a circle of radius a at
constant angular frequency ω.

• Find the Lienard-Wiechert potentials for points on the z-axis.

• Find the electric and magnetic fields at the center.

When I tried this I did it for points not just on the z-axis. It turns out that we also got this
question on the exam (but stated slightly differently). Since I’ll not get to see my exam solution
again, let’s work through this at a leisurely rate, and see if things look right. The problem as
stated in this old practice exam is easier since it doesn’t say to calculate the fields from the four
potentials, so there was nothing preventing one from just grinding away and plugging stuff into
the Lienard-Wiechert equations for the fields (as I did when I tried it for practice).

1.1. The potentials.

Let’s set up our coordinate system in cylindrical coordinates. For the charged particle and the
point that we measure the field, with i = e1e2

x(t) = ae1eiωt (1)

r = ze3 + ρe1eiφ (2)

Here I’m using the geometric product of vectors (if that’s unfamiliar then just substitute
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{e1, e2, e3} → {σ1, σ2, σ3} (3)

We can do that since the Pauli matrices also have the same semantics (with a small difference
since the geometric square of a unit vector is defined as the unit scalar, whereas the Pauli matrix
square is the identity matrix). The semantics we require of this vector product are just e2

α = 1 and
eαeβ = −eβeα for any α 6= β.

I’ll also be loose with notation and use Re(X) = 〈X〉 to select the scalar part of a multivector
(or with the Pauli matrices, the portion proportional to the identity matrix).

Our task is to compute the Lienard-Wiechert potentials. Those are

A0 =
q

R∗
(4)

A = A0 v
c

, (5)

where

R = r− x(tr) (6)
R = |R| = c(t− tr) (7)

R∗ = R− v
c
· R (8)

v =
dx
dtr

. (9)

We’ll need (eventually)

v = aωe2eiωtr = aω(− sin ωtr, cos ωtr, 0) (10)

v̇ = −aω2e1eiωtr = −aω2(cos ωtr, sin ωtr, 0) (11)

and also need our retarded distance vector

R = ze3 + e1(ρeiφ − aeiωtr), (12)

From this we have

R2 = z2 +
∣∣∣e1(ρeiφ − aeiωtr)

∣∣∣2
= z2 + ρ2 + a2 − 2ρa(e1ρeiφ) · (e1eiωtr)

= z2 + ρ2 + a2 − 2ρa Re(ei(φ−ωtr))

= z2 + ρ2 + a2 − 2ρa cos(φ−ωtr)

So
R =

√
z2 + ρ2 + a2 − 2ρa cos(φ−ωtr). (13)

Next we need
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R · v/c = (ze3 + e1(ρeiφ − aeiωtr)) ·
(

a
ω

c
e2eiωtr

)
= a

ω

c
Re(i(ρe−iφ − ae−iωtr)eiωtr)

= a
ω

c
ρ Re(ie−iφ+iωtr)

= a
ω

c
ρ sin(φ−ωtr)

So we have

R∗ =
√

z2 + ρ2 + a2 − 2ρa cos(φ−ωtr)− a
ω

c
ρ sin(φ−ωtr) (14)

Writing k = ω/c, and having a peek back at 4, our potentials are now solved for

A0 =
q√

z2 + ρ2 + a2 − 2ρa cos(φ− kctr)

A = A0ak(− sin kctr, cos kctr, 0).
(15)

The caveat is that tr is only specified implicitly, according to

ctr = ct−
√

z2 + ρ2 + a2 − 2ρa cos(φ− kctr). (16)

There doesn’t appear to be much hope of solving for tr explicitly in closed form.

1.2. General fields for this system.

With

R∗ = R− v
c

R, (17)

the fields are

E = q(1− v2/c2)
R∗

R∗3 +
q

R∗3 R× (R∗ × v̇/c2)

B =
R
R
× E.

(18)

In there we have

1− v2/c2 = 1− a2 ω2

c2 = 1− a2k2 (19)

and

R∗ = ze3 + e1(ρeiφ − aeikctr)− ake2eikctr R

= ze3 + e1(ρeiφ − a(1− kRi)eikctr)
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Writing this out in coordinates isn’t particularly illuminating, but can be done for completeness
without too much trouble

R∗ = (ρ cos φ− a cos tr + akR sin tr, ρ sin φ− a sin tr − akR cos tr, z) (20)

In one sense the problem could be considered solved, since we have all the pieces of the puzzle.
The outstanding question is whether or not the resulting mess can be simplified at all. Let’s see if
the cross product reduces at all. Using

R× (R∗ × v̇/c2) = R∗(R · v̇/c2)− v̇
c2 (R · R

∗) (21)

Perhaps one or more of these dot products can be simplified? One of them does reduce nicely

R∗ · R = (R− Rv/c) · R
= R2 − (R · v/c)R

= R2 − Rakρ sin(φ− kctr)

= R(R− akρ sin(φ− kctr))

R · v̇/c2 =
(

ze3 + e1(ρeiφ − aeiωtr)
)
· (−ak2e1eiωtr)

= −ak2
〈

e1(ρeiφ − aeiωtr)e1eiωtr)
〉

= −ak2
〈
(ρeiφ − aeiωtr)e−iωtr)

〉
= −ak2

〈
ρeiφ−iωtr − a

〉
= −ak2(ρ cos(φ− kctr)− a)

Putting this cross product back together we have

R× (R∗ × v̇/c2) = ak2(a− ρ cos(φ− kctr))R∗ + ak2e1eikctr R(R− akρ sin(φ− kctr))

= ak2(a− ρ cos(φ− kctr))
(

ze3 + e1(ρeiφ − a(1− kRi)eikctr)
)

+ ak2Re1eikctr(R− akρ sin(φ− kctr))

Writing

φr = φ− kctr, (22)

this can be grouped into similar terms

R× (R∗ × v̇/c2) = ak2(a− ρ cos φr)ze3

+ ak2e1(a− ρ cos φr)ρeiφ

+ ak2e1 (−a(a− ρ cos φr)(1− kRi) + R(R− akρ sin φr)) eikctr

(23)

The electric field pieces can now be collected. Not expanding out the R∗ from 14, this is
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E =
q

(R∗)3 ze3

(
1− aρk2 cos φr

)
+

q
(R∗)3 ρe1

(
1− aρk2 cos φr

)
eiφ

+
q

(R∗)3 ae1

(
−
(

1 + ak2(a− ρ cos φr)
)
(1− kRi)(1− a2k2) + k2R(R− akρ sin φr)

)
eikctr

(24)

Along the z-axis where ρ = 0 what do we have?

R =
√

z2 + a2 (25a)

A0 =
q
R

(25b)

A = A0ake2eikctr (25c)

ctr = ct−
√

z2 + a2 (25d)

E =
q

R3 ze3

+
q

R3 ae1

(
−(1− a4k4)(1− kRi) + k2R2

)
eikctr

(25e)

B =
ze3 − ae1eikctr

R
× E (25f)

The magnetic term here looks like it can be reduced a bit.

1.3. An approximation near the center.

Unlike the old exam I did, where it didn’t specify that the potentials had to be used to calculate
the fields, and the problem was reduced to one of algebraic manipulation, our exam explicitly
asked for the potentials to be used to calculate the fields.

There was also the restriction to compute them near the center. Setting ρ = 0 so that we are
looking only near the z-axis, we have

A0 =
q√

z2 + a2
(26)

A =
qake2eikctr

√
z2 + a2

=
qak(− sin kctr, cos kctr, 0)√

z2 + a2
(27)

tr = t− R/c = t−
√

z2 + a2/c (28)

Now we are set to calculate the electric and magnetic fields directly from these. Observe that
we have a spatial dependence in due to the tr quantities and that will have an effect when we
operate with the gradient.

In the exam I’d asked Simon (our TA) if this question was asking for the fields at the origin (ie:
in the plane of the charge’s motion in the center) or along the z-axis. He said in the plane. That
would simplify things, but perhaps too much since A0 becomes constant (in my exam attempt I
somehow fudged this to get what I wanted for the v = 0 case, but that must have been wrong,
and was the result of rushed work).
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Let’s now proceed with the field calculation from these potentials

E = −∇A0 − 1
c

∂A
∂t

(29)

B = ∇×A. (30)

For the electric field we need

∇A0 = qe3∂z(z2 + a2)−1/2

= −qe3
z

(
√

z2 + a2)3
,

and

1
c

∂A
∂t

=
qak2e2e1e2eikctr

√
z2 + a2

. (31)

Putting these together, our electric field near the z-axis is

E = qe3
z

(
√

z2 + a2)3
+

qak2e1eikctr

√
z2 + a2

. (32)

(another mistake I made on the exam, since I somehow fooled myself into forcing what I knew
had to be in the gradient term, despite having essentially a constant scalar potential (having taken
z = 0)).

What do we get for the magnetic field. In that case we have

∇×A(z) = eα × ∂αA

= e3 × ∂z
qake2eikctr

√
z2 + a2

= e3 × (e2eikctr)qak
∂

∂z
1√

z2 + a2
+ qak

1√
z2 + a2

e3 × (e2∂zeikctr)

= −e3 × (e2eikctr)qak
z

(
√

z2 + a2)3
+ qak

1√
z2 + a2

e3 ×
(

e2e1e2kceikctr ∂z(t−
√

za + a2/c)
)

= −e3 × (e2eikctr)qak
z

(
√

z2 + a2)3
− qak2 z

z2 + a2 e3 ×
(

e1keikctr
)

= − qakze3

z2 + a2 ×
(

e2eikctr

√
z2 + a2

+ ke1eikctr

)
For the direction vectors in the cross products above we have

e3 × (e2eiµ) = e3 × (e2 cos µ− e1 sin µ)

= −e1 cos µ− e2 sin µ

= −e1eiµ
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and

e3 × (e1eiµ) = e3 × (e1 cos µ + e2 sin µ)

= e2 cos µ− e1 sin µ

= e2eiµ

Putting everything, and summarizing results for the fields, we have

E = qe3
z

(
√

z2 + a2)3
+

qak2e1eiωtr

√
z2 + a2

(33)

B =
qakz

z2 + a2

(
e1√

z2 + a2
− ke2

)
eiωtr (34)

The electric field expression above compares well to 25e. We have the Coulomb term and the
radiation term. It is harder to compare the magnetic field to the exact result 25f since I did not
expand that out.

FIXME: A question to consider. If all this worked should we not also get

B ?
=

ze3 − e1aeiωtr

√
z2 + a2

× E. (35)

However, if I do this check I get

B =
qaz

z2 + a2

(
1

z2 + a2 + k2
)

e2eiωtr . (36)

1.4. Without geometric algebra.

I tried the problem of calculating the Lienard-Wiechert potentials for circular motion once
again in [1] but with the added generalization that allowed the particle to have radial or z-axis
motion. Really that was no longer a circular motion problem, but really just a calculation where I
was playing with the use of cylindrical coordinates to describe the motion.

It occurred to me that this can be done without any use of Geometric Algebra (or Pauli matri-
ces), which is probably how I should have attempted it on the exam. Let’s use a hybrid coordinate
vector and complex number representation to describe the particle position

xc =

[
aeiθ

h

]
, (37)

with the field measurement position of

r =
[

ρeiφ

z

]
. (38)

The particle velocity is

vc =

[
(ȧ + iaθ̇)eiθ

ḣ

]
=

[
eiθ ieiθ 0
0 0 1

]  ȧ
aθ̇

ḣ

 (39)
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We also want the vectorial difference between the field measurement position and the particle
position

R = r− xc =

[
eiφ −eiθ 0
0 0 1

]  ρ
a

z− h

 . (40)

The dot product between R and vc is then

vc · R =
[
ȧ aθ̇ ḣ

]
Re

 e−iθ 0
−ie−iθ 0

0 1

 [eiφ −eiθ 0
0 0 1

] ρ
a

z− h


=
[
ȧ aθ̇ ḣ

]
Re

 ei(φ−θ) −1 0
−iei(φ−θ) i 0

0 0 1

 ρ
a

z− h


=
[
ȧ aθ̇ ḣ

] cos(φ− θ) −1 0
sin(φ− θ) 0 0

0 0 1

 ρ
a

z− h

 .

Expansion of the final matrix products is then

vc · R = ḣ(z− h)− aȧ + ρȧ cos(φ− θ) + ρa2θ̇ sin(φ− θ) (41)

The other quantity that we want is R2, which is

R2 =
[
ρ a (z− h)

]
Re

 e−iφ 0
−e−iθ 0

0 1

 [eiφ −eiθ 0
0 0 1

] ρ
a

z− h


=
[
ρ a (z− h)

]  1 − cos(φ− θ) 0
− cos(φ− θ) 1 0

0 0 1

 ρ
a

z− h



The retarded time at which the field is measured is therefore defined implicitly by

R =
√
(ρ2 + (a(tr))2 + (z− h(tr))2 − 2a(tr)ρ cos(φ− θ(tr)) = c(t− tr). (42)

Together 39, 41, and 42 define the four potentials

A0 =
q

R− R · vc/c
(43)

A =
vc

c
A0, (44)

where all quantities are evaluated at the retarded time tr given by 42.
In the homework (and in the text [2] §63) we found for E and B

8



E = e(1− β2
c)

R̂− βc

R2(1− R̂ · βc)
3
+ e

1
R(1− R̂ · βc)

3
R̂× ((R̂− βc)× ac/c2) (45)

B = R̂× E. (46)

Expanding out the cross products this yields

E = e(1− β2
c)

R̂− βc

R2(1− R̂ · βc)
3
+ e

1
R(1− R̂ · βc)

3
(R̂− βc)

(
R̂ · ac

c2

)
− e

1
R(1− R̂ · βc)

2

ac

c2 (47)

B = e(1− β2
c)

βc × R̂
R2(1− R̂ · βc)

3
+ e

1
R(1− R̂ · βc)

3
(βc × R̂)

(
R̂ · ac

c2

)
+ e

1
R(1− R̂ · βc)

2

ac

c2 × R̂ (48)

While longer, it is nice to call out the symmetry between E and B explicitly. As a side note, how
do these combine in the Geometric Algebra formalism where we have F = E + IB? That gives us

F = e
1

(1− R̂ · βc)
3

((
1− β2

c
R2 +

R̂ · ac

cR

) (
R̂− βc + R̂ ∧ (R̂− βc)

)
+

1
R

(ac

c2 +
ac

c2 ∧ R̂
))

(49)

I’d guess a multivector of the form a + a ∧ b̂, can be tidied up a bit more, but this won’t be
persued here. Instead let’s write out the fields corresponding to the potentials of 43 explicitly. We
need to calculate ac, vc × R, ac × R, and ac · R. For the acceleration we get

ac =

[(
ä− aθ̇2 + i(aθ̈ + 2ȧθ̇)

)
eiθ

ḧ

]
(50)

Dotted with R we have

ac · R =

[(
ä− aθ̇2 + i(aθ̈ + 2ȧθ̇)

)
eiθ

ḧ

]
·
[

ρeiφ − aeiθ

h

]
= hḧ + Re

((
ä− aθ̇2 + i(aθ̈ + 2ȧθ̇)

) (
ρei(θ−φ) − a

))
,

which gives us

ac · R = hḧ + (ä− aθ̇2)(ρ cos(φ− θ)− a) + (aθ̈ + 2ȧθ̇)ρ sin(φ− θ). (51)

Now, how do we handle the cross products in this complex number, scalar hybrid format?
With some playing around such a cross product can be put into the following tidy form[

z1
h1

]
×
[

z2
h2

]
=

[
i(h1z2 − h2z1)

Im(z∗1z2)

]
. (52)

This is a sensible result. Crossing with e3 will rotate in the x− y plane, which accounts for the
factors of i in the complex portion of the cross product. The imaginary part has only contributions
from the portions of the vectors z1 and z2 that are perpendicular to each other, so while the real
part of z∗1z2 measures the colinearity, the imaginary part is a measure of the amount perpendicular.
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Using this for our velocity cross product we have

vc × R =

[
(ȧ + iaθ̇)eiθ

ḣ

]
×
[

ρeiφ − aeiθ

h

]
=

[
i
(
ḣ(ρeiφ − aeiθ)− h(ȧ + iaθ̇)eiθ)
Im
(
(ȧ− iaθ̇)(ρei(φ−θ) − a)

) ]

which is

vc × R =

[
i(ḣρeiφ − (hȧ + ihaθ̇ + aḣ)eiθ)

ȧρ sin(φ− θ)− aθ̇ρ cos(φ− θ) + a2θ̇

]
. (53)

The last thing required to write out the fields is

ac × R =

[(
ä− aθ̇2 + i(aθ̈ + 2ȧθ̇)

)
eiθ

ḧ

]
×
[

ρeiφ − aeiθ

z− h

]
=

[
iḧ(ρeiφ − aeiθ)− i(z− h)

(
ä− aθ̇2 + i(aθ̈ + 2ȧθ̇)

)
eiθ

Im
((

ä− aθ̇2 − i(aθ̈ + 2ȧθ̇)
)
(ρei(φ−θ) − a)

) ]

So the acceleration cross product is

ac × R =

[
iḧρeiφ − i

(
ḧa + (z− h)

(
ä− aθ̇2 + i(aθ̈ + 2ȧθ̇)

))
eiθ(

ä− aθ̇2) ρ sin(φ− θ)− (aθ̈ + 2ȧθ̇)(ρ cos(φ− θ)− a)

]
(54)

Putting all the results together creates something that is too long to easily write, but can at least
be summarized
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E =
e

(R− R · βc)
3

((
1− β2

c + R · ac

c2

)
(R− βcR)− R(R− R · βc)

ac

c2

)
(55)

B =
e

(R− R · βc)
3

((
1− β2

c + R · ac

c2

)
(βc × R)− (R− R · βc)

ac

c2 × R
)

(56)

1− β2
c = 1− (ȧ2 + a2θ̇2 + ḣ2)/c2 (57)

R =
√
(ρ2 + (a(tr))2 + (z− h(tr))2 − 2a(tr)ρ cos(φ− θ(tr)) = c(t− tr) (58)

R− βcR =

[
ρeiφ − (a + (ȧ + iaθ̇)R/c)eiθ

z− h− ḣR/c

]
(59)

βc · R =
1
c
(
ḣ(z− h)− aȧ + ρȧ cos(φ− θ) + ρa2θ̇ sin(φ− θ)

)
(60)

βc × R =
1
c

[
i(ḣρeiφ − (hȧ + ihaθ̇ + aḣ)eiθ)

ȧρ sin(φ− θ)− aθ̇ρ cos(φ− θ) + a2θ̇

]
(61)

ac

c2 =
1
c2

[(
ä− aθ̇2 + i(aθ̈ + 2ȧθ̇)

)
eiθ

ḧ

]
(62)

ac

c2 · R =
1
c2

(
hḧ + (ä− aθ̇2)(ρ cos(φ− θ)− a) + (aθ̈ + 2ȧθ̇)ρ sin(φ− θ)

)
(63)

ac

c2 × R =
1
c2

[
iḧρeiφ − i

(
ḧa + (z− h)

(
ä− aθ̇2 + i(aθ̈ + 2ȧθ̇)

))
eiθ(

ä− aθ̇2) ρ sin(φ− θ)− (aθ̈ + 2ȧθ̇)(ρ cos(φ− θ)− a)

]
. (64)

This is a whole lot more than the exam question asked for, since it is actually the most general
solution to the electric and magnetic fields associated with an arbitrary charged particle (when that
motion is described in cylindrical coordinates). The exam question had θ = kct and ȧ = 0, h = 0,
which kills a number of the terms

1− β2
c +

ac

c2 · R = 1− ak2ρ cos(φ− kctr) (65)

R =
√
(ρ2 + a2 + z2 − 2aρ cos(φ− kctr) = c(t− tr) (66)

R− βcR =

[
ρeiφ − a(1 + ikR)eikctr

z

]
(67)

βc · R = ρa2k sin(φ− kctr) (68)

βc × R =

[
0

ak(a− ρ cos(φ− kctr))

]
(69)

ac

c2 =

[
−ak2eikctr

0

]
(70)

ac

c2 × R =

[
izak2eikctr

−ak2ρ sin(φ− kctr)

]
. (71)

This is still messy, but is a satisfactory solution to the problem.
The exam question also asked only about the ρ = 0, so φ also becomes irrelevant. In that case

we have along the z-axis the fields are given by
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E(z) =
e

R3

[
−a(1 + ikR− k2R2)eik(ct−R)

z

]
(72)

B(z) =
e

R3

[
−Rizak2eik(ct−R)

a2k

]
(73)

R =
√

a2 + z2 (74)

Similar to when things were calculated from the potentials directly, I get a different result from
R̂× E

R̂× E(z) =
e

R3

[
akz(1 + ikR)eik(ct−R)

−a2k

]
(75)

compared to the value of B that was directly calculated above. With the sign swapped in the
z-axis term of B(z) here I’d guess I’ve got an algebraic error hiding somewhere?

2. Collision of photon and electron.

I made a dumb error on the exam on this one. I setup the four momentum conservation state-
ment, but then didn’t multiply out the cross terms properly. This led me to incorrectly assume
that I had to try doing this the hard way (something akin to what I did on the midterm). Simon
later told us in the tutorial the simple way, and that’s all we needed here too. Here’s the setup.

An electron at rest initially has four momentum

(mc, 0) (76)

where the incoming photon has four momentum(
h̄

ω

c
, h̄k

)
(77)

After the collision our electron has some velocity so its four momentum becomes (say)

γ(mc, mv), (78)

and our new photon, going off on an angle θ relative to k has four momentum(
h̄

ω′

c
, h̄k′

)
(79)

Our conservation relationship is thus

(mc, 0) +
(

h̄
ω

c
, h̄k

)
= γ(mc, mv) +

(
h̄

ω′

c
, h̄k′

)
(80)

I squared both sides, but dropped my cross terms, which was just plain wrong, and costly for
both time and effort on the exam. What I should have done was just

γ(mc, mv) = (mc, 0) +
(

h̄
ω

c
, h̄k

)
−
(

h̄
ω′

c
, h̄k′

)
, (81)
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and then square this (really making contractions of the form pi pi). That gives (and this time
keeping my cross terms)

(γ(mc, mv))2 = γ2m2(c2 − v2)

= m2c2

= m2c2 + 0 + 0 + 2(mc, 0) ·
(

h̄
ω

c
, h̄k

)
− 2(mc, 0) ·

(
h̄

ω′

c
, h̄k′

)
− 2 ·

(
h̄

ω

c
, h̄k

)
·
(

h̄
ω′

c
, h̄k′

)
= m2c2 + 2mch̄

ω

c
− 2mch̄

ω′

c
− 2h̄2

(
ω

c
ω′

c
− k · k′

)
= m2c2 + 2mch̄

ω

c
− 2mch̄

ω′

c
− 2h̄2 ω

c
ω′

c
(1− cos θ)

Rearranging a bit we have

ω′
(

m +
h̄ω

c2 (1− cos θ)

)
= mω, (82)

or
ω′ =

ω

1 + h̄ω
mc2 (1− cos θ)

(83)

3. Pion decay.

The problem above is very much like a midterm problem we had, so there was no justifiable
excuse for messing up on it. That midterm problem was to consider the split of a pion at rest into
a neutrino (massless) and a muon, and to calculate the energy of the muon. That one also follows
the same pattern, a calculation of four momentum conservation, say

(mπc, 0) = h̄
ω

c
(1, k̂) + (Eµ/c, pµ). (84)

Here ω is the frequency of the massless neutrino. The massless nature is encoded by a four
momentum that squares to zero, which follows from (1, k̂) · (1, k̂) = 12 − k̂ · k̂ = 0.

When I did this problem on the midterm, I perversely put in a scattering angle, instead of
recognizing that the particles must scatter at 180 degree directions since spatial momentum com-
ponents must also be preserved. This and the combination of trying to work in spatial quantities
led to a mess and I didn’t get the end result in anything that could be considered tidy.

The simple way to do this is to just rearrange to put the null vector on one side, and then
square. This gives us

0 =
(

h̄
ω

c
(1, k̂)

)
·
(

h̄
ω

c
(1, k̂)

)
=
(
(mπc, 0)− (Eµ/c, pµ)

)
·
(
(mπc, 0)− (Eµ/c, pµ)

)
= mπ

2c2 + mν
2c2 − 2(mπc, 0) · (Eµ/c, pµ)

= mπ
2c2 + mν

2c2 − 2mπEµ

A final re-arrangement gives us the muon energy

13



Eµ =
1
2

mπ
2 + mν

2

mπ
c2 (85)
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