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1. Reading.

Covering chapter 3 material from the text [1].
Covering lecture notes pp. 74-83: gauge transformations in 3-vector language (74); energy of a

relativistic particle in EM field (75); variational principle and equation of motion in 4-vector form
(76-77); the field strength tensor (78-80); the fourth equation of motion (81)

2. What is the significance to the gauge invariance of the action?

We had argued that under a gauge transformation

Ai → Ai +
∂χ

∂xi , (1)

the action for a particle changes by a boundary term

− e
c
(χ(xb)− χ(xa)). (2)

Because S changes by a boundary term only, variation problem is not affected. The extremal
trajectories are then the same, hence the EOM are the same.

2.1. A less high brow demonstration.

With our four potential split into space and time components

Ai = (φ, A), (3)

the lower index representation of the same vector is

Ai = (φ,−A). (4)

Our gauge transformation is then

A0 → A0 +
∂χ

∂x0 (5)

−A→ −A +
∂χ

∂x
(6)
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or

φ→ φ +
1
c

∂χ

∂t
(7)

A→ A−∇χ. (8)

Now observe how the electric and magnetic fields are transformed

E = −∇φ− 1
c

∂A
∂t

→ −∇
(

φ +
1
c

∂χ

∂t

)
− 1

c
∂

∂t
(A−∇χ)

Sufficient continuity of χ is assumed, allowing commutation of the space and time derivatives,
and we are left with just E

For the magnetic field we have

B = ∇×A
→ ∇× (A−∇χ)

Again with continuity assumptions, ∇× (∇χ) = 0, and we are left with just B. The electro-
magnetic fields (as opposed to potentials) do not change under gauge transformations.

We conclude that the {Ai} description is hugely redundant, but despite that, local L and H
can only be written in terms of the potentials Ai.

2.2. Energy term of the Lorentz force. Three vector approach.

With the Lagrangian for the particle given by

L = −mc2

√
1− v2

c2 +
e
c

A · v− eφ, (9)

we define the energy as

E = v · ∂L
∂v
−L (10)

This is not necessarily a conserved quantity, but we define it as the energy anyways (we don’t
really have a Hamiltonian when the fields are time dependent). Associated with this quantity is
the general relationship

dE
dt

= −∂L
∂t

, (11)

and when the Lagrangian is invariant with respect to time translation the energy E will be a
conserved quantity (and also the Hamiltonian).

Our canonical momentum is
∂L
∂v

= γmv +
e
c

A (12)

2



So our energy is

E = γmv2 +
e
c

A · v−
(
−mc2

√
1− v2

c2 +
e
c

A · v− eφ

)
.

Or

E =
mc2√
1− v2

c2︸ ︷︷ ︸
(∗)

+eφ. (13)

The contribution of (∗) to the energy E comes from the free (kinetic) particle portion of the

Lagrangian L = −mc2
√

1− v2

c2 , and we identify the remainder as a potential energy

E =
mc2√
1− v2

c2

+ eφ︸︷︷︸
”potential”

. (14)

For the kinetic portion we can also show that we have

d
dt
Ekinetic =

mc2√
1− v2

c2

= eE · v. (15)

To show this observe that we have

d
dt
Ekinetic = mc2 dγ

dt

= mc2 d
dt

1√
1− v2

c2

= mc2
v
c2 · dv

dt(
1− v2

c2

)3/2

=
mγv · dv

dt

1− v2

c2

We also have

v · dp
dt

= v · d
dt

mv√
1− v2

c2

= mv2 dγ

dt
+ mγv · dv

dt

= mv2 dγ

dt
+ mc2 dγ

dt

(
1− v2

c2

)
= mc2 dγ

dt
.
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Utilizing the Lorentz force equation, we have

v · dp
dt

= e
(

E +
v
c
× B

)
· v = eE · v (16)

and are able to assemble the above, and find that we have

d(mc2γ)

dt
= eE · v (17)

3. Four vector Lorentz force

Using ds =
√

dxidxi our action can be rewritten

S =
∫ (
−mcds− e

c
ui Aids

)
=
∫ (
−mcds− e

c
dxi Ai

)
=
∫ (
−mc

√
dxidxi −

e
c

dxi Ai

)

xi(τ) is a worldline xi(0) = ai, xi(1) = bi,
We want δS = S[x + δx]− S[x] = 0 (to linear order in δx)
The variation of our proper length is

δds = δ
√

dxidxi

=
1

2
√

dxidxi
δ(dxjdxj)

Observe that for the numerator we have

δ(dxjdxj) = δ(dxjgjkdxk)

= δ(dxj)gjkdxk + dxjgjkδ(dxk)

= δ(dxj)gjkdxk + dxkgkjδ(dxj)

= 2δ(dxj)gjkdxk

= 2δ(dxj)dxj

TIP: If this goes too quick, or there is any disbelief, write these all out explicitly as dxjdxj =

dx0dx0 + dx1dx1 + dx2dx2 + dx3dx3 and compute it that way.
For the four vector potential our variation is

δAi = Ai(x + δx)− Ai =
∂Ai

∂xj δxj = ∂j Aiδxj (18)

(i.e. By chain rule)
Completing the proper length variations above we have
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δ
√

dxidxi =
1√

dxidxi
δ(dxj)dxj

= δ(dxj)
dxj

ds
= δ(dxj)uj

= dδxjuj

We are now ready to assemble results and do the integration by parts

δS =
∫ (
−mcd(δxj)uj −

e
c

d(δxi)Ai −
e
c

dxi∂j Aiδxj
)

=
(
−mc(δxj)uj −

e
c
(δxi)Ai

)∣∣∣b
a
+
∫ (

mcδxjduj +
e
c
(δxi)dAi −

e
c

dxi∂j Aiδxj
)

Our variation at the endpoints is zero δxi
∣∣

a = δxi
∣∣
b = 0, killing the non-integral terms

δS =
∫

δxj
(

mcduj +
e
c

dAj −
e
c

dxi∂j Ai

)
.

Observe that our differential can also be expanded by chain rule

dAj =
∂Aj

∂xi dxi = ∂i Ajdxi, (19)

which simplifies the variation further

δS =
∫

δxj
(

mcduj +
e
c

dxi(∂i Aj − ∂j Ai)
)

=
∫

δxjds
(

mc
duj

ds
+

e
c

ui(∂i Aj − ∂j Ai)

)

Since this is true for all variations δxj, which is arbitrary, the interior part is zero everywhere
in the trajectory. The antisymmetric portion, a rank 2 4-tensor is called the electromagnetic field
strength tensor, and written

Fij = ∂i Aj − ∂j Ai. (20)

In matrix form this is

∥∥Fij
∥∥ =


0 Ex Ey Ez
−Ex 0 −Bz By
−Ey Bz 0 −Bx
−Ez −By Bx 0.

 (21)
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In terms of the field strength tensor our Lorentz force equation takes the form

d(mcui)

ds
=

e
c

Fijuj. (22)
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