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1. Reading.

Covering chapter 3 material from the text [1].

Covering lecture notes pp. 74-83: gauge transformations in 3-vector language (74); energy of a
relativistic particle in EM field (75); variational principle and equation of motion in 4-vector form
(76-77); the field strength tensor (78-80); the fourth equation of motion (81)

2. What is the significance to the gauge invariance of the action?

We had argued that under a gauge transformation

Ix
Ai = Ai+ 55, (1)
the action for a particle changes by a boundary term

e

— - (x () = x(xa)). )

Because S changes by a boundary term only, variation problem is not affected. The extremal
trajectories are then the same, hence the EOM are the same.

2.1. A less high brow demonstration.

With our four potential split into space and time components
A= (¢,A), 3)

the lower index representation of the same vector is

A= (¢, —A). 4)
Our gauge transformation is then
IX
AO — A() + w (5)
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or

10x
¢+ )
A—A-Vy. (8)

Now observe how the electric and magnetic fields are transformed

10A
E=-Vo- %
10x 190

Sufficient continuity of x is assumed, allowing commutation of the space and time derivatives,
and we are left with just E
For the magnetic field we have

B=VxA
— V x (A=VY)

Again with continuity assumptions, V x (V) = 0, and we are left with just B. The electro-
magnetic fields (as opposed to potentials) do not change under gauge transformations.

We conclude that the {A;} description is hugely redundant, but despite that, local £ and H
can only be written in terms of the potentials A;.

2.2. Energy term of the Lorentz force. Three vector approach.
With the Lagrangian for the particle given by

2
E:—mczyll—:—z—f—gA‘v—e(p, )

gzv.g_g (10)

This is not necessarily a conserved quantity, but we define it as the energy anyways (we don’t
really have a Hamiltonian when the fields are time dependent). Associated with this quantity is
the general relationship

we define the energy as

ag&  dL
dt —at’
and when the Lagrangian is invariant with respect to time translation the energy £ will be a
conserved quantity (and also the Hamiltonian).
Our canonical momentum is

(11)

L
5o = ymv+ SA (12)
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So our energy is
c_ , e 5 vZ e
= ymv —I—EA-V— —mc 1—C—2+EA-v—e<p .

E=—— tep. (13)

The contribution of (x) to the energy £ comes from the free (kinetic) particle portion of the
Lagrangian £ = —mc?y/1 — ‘C’—zz, and we identify the remainder as a potential energy

1’I”lC2

£ = —— + e . (14)
_ v S~~~
V c2 “potential”

For the kinetic portion we can also show that we have

d mc?
%gkinetic = s =¢E-v. (15)
1_V
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To show this observe that we have

d _ 20y
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We also have
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Utilizing the Lorentz force equation, we have

dp _
Vo= (E+—><B)‘V—eE-V (16)
and are able to assemble the above, and find that we have
d(mc*y)
Fr eE-v (17)

3. Four vector Lorentz force

Using ds = \/dxidx; our action can be rewritten

©n
I

(—mcds — SuiAids)
(—mcds — deiAi>

(—mcx/ dxidx; — deiAi)

Il
—_—

x(7) is a worldline x'(0) = a, x(1) = b/,
We want 6S = S[x + dx] — S[x] = 0 (to linear order in éx)
The variation of our proper length is

éds = 6+/dxidx;

= ¥5(dx7’dxj)

2+/dxidx;

Observe that for the numerator we have

5(d x]dx])

(dx]g 1dxk)

(dx )g]-kdx + dxjg]-ké(dxk)
(dx))gdx® + dx* g0 (dx)
5(dx])gjkdxk

5(dxj)dxj

0
0
0
2
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TIP: If this goes too quick, or there is any disbelief, write these all out explicitly as dx/dx; =
dx%dxo + dx'dx; + dx*dx; + dx3dx3 and compute it that way.
For the four vector potential our variation is

QA

bA; = Aj(x +6x) — A; = axf.

x = 0;A;6x (18)

(i.e. By chain rule)
Completing the proper length variations above we have



(5 vV dxidxl‘ - \/d;ﬁ(S(dx])dx]
i

d
= é(dx)) =7

= 5(dxj)u]-
= d&xjuj

We are now ready to assemble results and do the integration by parts

05 = / <—mcd(§xj)uj d(&x )A — fdx A, 5x])

= ( mc(éx]) (5x)

((5x NdA; — fdx 8 A; (5x])

Our variation at the endpoints is zero éx’ |a = 6x'| » = 0, killing the non-integral terms

oS = /(Fx] (mcduj + gdA] — dela]Al) .
Observe that our differential can also be expanded by chain rule

94; . i
dA] = ﬁdx = BZA]dx ’ (19)

which simplifies the variation further

65 = [ o1 (medu;+ ' (9,4; — 9;4,))
= /5x]ds (mc + u (aiAj - E)in)>
Since this is true for all variations dx/, which is arbitrary, the interior part is zero everywhere

in the trajectory. The antisymmetric portion, a rank 2 4-tensor is called the electromagnetic field
strength tensor, and written

Fi]' = E)IA] — a]Al (20)
In matrix form this is
0 E, E, E,
f_|"Ex 0 —=B: By
= | s B e

~E. —B, By O



In terms of the field strength tensor our Lorentz force equation takes the form

d(mcu;)
ds

e .
= *Pl'juj.
c
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