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1. Reading.

Covering chapter 3 material from the text [1].
Covering lecture notes pp. 74-83: Lorentz transformation of the strength tensor (82) [Tuesday,

Feb. 8] [extra reading for the mathematically minded: gauge field, strength tensor, and gauge
transformations in differential form language, not to be covered in class (83)]

Covering lecture notes pp. 84-102: Lorentz invariants of the electromagnetic field (84-86);
Bianchi identity and the first half of Maxwell’s equations (87-90)
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2. Chewing on the four vector form of the Lorentz force equation.

After much effort, we arrived at

d(mcul)

ds
=

e
c
(∂l Ai − ∂i Al) ui (1)

or
dpl

ds
=

e
c

Fliui (2)

2.1. Elements of the strength tensor

Claim : there are only 6 independent elements of this matrix (tensor)
0 . . .

0 . .
0 .

0

 (3)

This is a no-brainer, for we just have to mechanically plug in the elements of the field strength
tensor

Recall

Ai = (φ, A) (4)
Ai = (φ,−A) (5)

F0α = ∂0Aα − ∂α A0

= −∂0(A)α − ∂αφ

F0α = Eα (6)

For the purely spatial index combinations we have

Fαβ = ∂α Aβ − ∂β Aα

= −∂α(A)β + ∂β(A)α

Written out explicitly, these are

F12 = ∂2(A)1 − ∂1(A)2 (7)
F23 = ∂3(A)2 − ∂2(A)3 (8)
F31 = ∂1(A)3 − ∂3(A)1. (9)

We can compare this to the elements of B
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B =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂1 ∂2 ∂3
Ax Ay Az

∣∣∣∣∣∣ (10)

We see that

(B)z = ∂1Ay − ∂2Ax (11)
(B)x = ∂2Az − ∂3Ay (12)
(B)y = ∂3Ax − ∂1Az (13)

So we have

F12 = −(B)3 (14)
F23 = −(B)1 (15)
F31 = −(B)2. (16)

These can be summarized as simply

Fαβ = −εαβγBγ. (17)

This provides all the info needed to fill in the matrix above

∥∥Fij
∥∥ =


0 Ex Ey Ez
−Ex 0 −Bz By
−Ey Bz 0 −Bx
−Ez −By Bx 0.

 . (18)

2.2. Index raising of rank 2 tensor

To raise indexes we compute

Fij = gil gjkFlk. (19)

2.2.1 Justifying the raising operation.

To justify this consider raising one index at a time by applying the metric tensor to our defini-
tion of Flk. That is

gal Flk = gal(∂l Ak − ∂k Al)

= ∂a Ak − ∂k Aa.

Now apply the metric tensor once more

gbkgal Flk = gbk(∂a Ak − ∂k Aa)

= ∂a Ab − ∂b Aa.
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This is, by definition Fab. Since a rank 2 tensor has been defined as an object that transforms
like the product of two pairs of coordinates, it makes sense that this particular tensor raises in
the same fashion as would a product of two vector coordinates (in this case, it happens to be an
antisymmetric product of two vectors, and one of which is an operator, but we have the same
idea).

2.2.2 Consider the components of the raised Fij tensor.

F0α = −F0α (20)

Fαβ = Fαβ. (21)

∥∥∥Fij
∥∥∥ =


0 −Ex −Ey −Ez

Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0

 . (22)

2.3. Back to chewing on the Lorentz force equation.

mc
dui

ds
=

e
c

Fijuj (23)

ui = γ
(

1,
v
c

)
(24)

ui = γ
(

1,−v
c

)
(25)

For the spatial components of the Lorentz force equation we have

mc
duα

ds
=

e
c

Fαjuj

=
e
c

Fα0u0 +
e
c

Fαβuβ

=
e
c
(−Eα)γ +

e
c
(−εαβγBγ)

vβ

c
γ

But

mc
duα

ds
= −m

d(γvα)

ds

= −m
d(γvα)

c
√

1− v2

c2 dt

= −γ
d(mγvα)

cdt
.

Canceling the common −γ/c terms, and switching to vector notation, we are left with
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d(mγvα)

dt
= e

(
Eα +

1
c
(v× B)α

)
. (26)

Now for the energy term. We have

mc
du0

ds
=

e
c

F0αuα

=
e
c

Eαγ
vα

c
dmcγ

ds
=

Putting the final two lines into vector form we have

d(mc2γ)

dt
= eE · v, (27)

or
dE
dt

= eE · v (28)

3. Transformation of rank two tensors in matrix and index form.

3.1. Transformation of the metric tensor, and some identities.

With
Ĝ =

∥∥gij
∥∥ =

∥∥∥gij
∥∥∥ (29)

We claim: The rank two tensor Ĝ transforms in the following sort of sandwich operation, and
this leaves it invariant

Ĝ → ÔĜÔT = Ĝ. (30)

To demonstrate this let’s consider a transformed vector in coordinate form as follows

x′i = Oijxj = Oi
jxj (31)

x′i = Oijxj = Oi
jxj. (32)

We can thus write the equation in matrix form with

X =
∥∥∥xi
∥∥∥ (33)

X′ =
∥∥∥x′i

∥∥∥ (34)

Ô =
∥∥∥Oi

j

∥∥∥ (35)

X′ = ÔX (36)
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Our invariant for the vector square, which is required to remain unchanged is

x′ix′i = (Oijxj)(Oikxk)

= xk(OijOik)xj.

This shows that we have a delta function relationship for the Lorentz transform matrix, when
we sum over the first index

OaiOaj = δi
j. (37)

It appears we can put 37 into matrix form as

ĜÔTĜÔ = I (38)

Now, if one considers that the transpose of a rotation is an inverse rotation, and the transpose
of a boost leaves it unchanged, the transpose of a general Lorentz transformation, a composition
of an arbitrary sequence of boosts and rotations, must also be a Lorentz transformation, and must
then also leave the norm unchanged. For the transpose of our Lorentz transformation Ô lets write

P̂ = ÔT (39)

For the action of this on our position vector let’s write

x′′i = Pijxj = Ojixj (40)

x′′i = Pijxj = Ojixj (41)

so that our norm is

x′′ax′′a = (Okaxk)(Ojaxj)

= xk(OkaOja)xj

= xjxj

We must then also have an identity when summing over the second index

δk
j = OkaOja (42)

Armed with these facts on the products of Oij and Oij we can now consider the transformation
of the metric tensor.

The rule (definition) supplied to us for the transformation of an arbitrary rank two tensor, is
that this transforms as its indexes transform individually. Very much as if it was the product of
two coordinate vectors and we transform those coordinates separately. Doing so for the metric
tensor we have
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gij → Oi
kgkmOj

m

= (Oi
kgkm)Oj

m

= OimOj
m

= Oim(Oamgaj)

= (OimOam)gaj

However, by 42, we have OamOim = δa
i, and we prove that

gij → gij. (43)

Finally, we wish to put the above transformation in matrix form, look more carefully at the
very first line

gij → Oi
kgkmOj

m

which is

Ĝ → ÔĜÔT = Ĝ (44)

We see that this particular form of transformation, a sandwich between Ô and ÔT, leaves the
metric tensor invariant.

3.2. Lorentz transformation of the electrodynamic tensor

Having identified a composition of Lorentz transformation matrices, when acting on the metric
tensor, leaves it invariant, it is a reasonable question to ask how this form of transformation acts
on our electrodynamic tensor Fij?

Claim: A transformation of the following form is required to maintain the norm of the Lorentz
force equation

F̂ → ÔF̂ÔT, (45)

where F̂ =
∥∥Fij

∥∥. Observe that our Lorentz force equation can be written exclusively in upper
index quantities as

mc
dui

ds
=

e
c

Fijgjlul (46)

Because we have a vector on one side of the equation, and it transforms by multiplication with
by a Lorentz matrix in SO(1,3)

dui

ds
→ Ô

dui

ds
(47)

The LHS of the Lorentz force equation provides us with one invariant

7



(mc)2 dui

ds
dui

ds
(48)

so the RHS must also provide one

e2

c2 Fijgjlul Fikgkmum =
e2

c2 FijujFikuk. (49)

Let’s look at the RHS in matrix form. Writing

U =
∥∥∥ui
∥∥∥ , (50)

we can rewrite the Lorentz force equation as

mcU̇ =
e
c

F̂ĜU. (51)

In this matrix formalism our invariant 49 is

e2

c2 (F̂ĜU)TĜF̂ĜU =
e2

c2 UTĜF̂TĜF̂ĜU. (52)

If we compare this to the transformed Lorentz force equation we have

mcÔU̇ =
e
c

F̂′ĜÔU. (53)

Our invariant for the transformed equation is

e2

c2 (F̂′ĜÔU)TĜF̂′ĜÔU =
e2

c2 UTÔTĜF̂′
T

ĜF̂′ĜÔU

Thus the transformed electrodynamic tensor F̂′ must satisfy the identity

ÔTĜF̂′
T

ĜF̂′ĜÔ = ĜF̂TĜF̂Ĝ (54)

With the substitution F̂′ = ÔF̂ÔT the LHS is

ÔTĜF̂′
T

ĜF̂′ĜÔ = ÔTĜ(ÔF̂ÔT)TĜ(ÔF̂ÔT)ĜÔ

= (ÔTĜÔ)F̂T(ÔTĜÔ)F̂(ÔTĜÔ)

We’ve argued that P̂ = ÔT is also a Lorentz transformation, thus

ÔTĜÔ = P̂ĜÔT

= Ĝ

This is enough to make both sides of 54 match, verifying that this transformation does provide
the invariant properties desired.
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3.3. Direct computation of the Lorentz transformation of the electrodynamic tensor.

We can construct the transformed field tensor more directly, by simply transforming the coor-
dinates of the four gradient and the four potential directly. That is

Fij = ∂i Aj − ∂j Ai → Oi
aOj

b

(
∂a Ab − ∂b Aa

)
= Oi

aFabOj
b

By inspection we can see that this can be represented in matrix form as

F̂ → ÔF̂ÔT (55)

4. Four vector invariants

For three vectors A and B invariants are

A · B = AαBα (56)

For four vectors Ai and Bi invariants are

AiBi = AigijBj (57)

For Fij what are the invariants? One invariant is

gijFij = 0, (58)

but this isn’t interesting since it is uniformly zero (product of symmetric and antisymmetric).
The two invariants are

FijFij (59)

and

εijkl FijFkl (60)

where

εijkl =


0 if any two indexes coincide
1 for even permutations of ijkl = 0123
−1 for odd permutations of ijkl = 0123

(61)

We can show (homework) that

FijFij ∝ E2 − B2 (62)

εijkl FijFkl ∝ E · B (63)

This first invariant serves as the action density for the Maxwell field equations.
There’s some useful properties of these invariants. One is that if the fields are perpendicular

in one frame, then will be in any other.
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From the first, note that if |E| > |B|, the invariant is positive, and must be positive in all
frames, or if |E| < |B|, the invariant is negative, and must be negative in all frames. Because of
this if |E| > |B| in one frame, we can transform to a frame with only E′ component, solve that, and
then transform back. Similarly if |E| < |B| in one frame, we can transform to a frame with only B′

component, solve that, and then transform back.

5. The first half of Maxwell’s equations.

Claim: The source free portions of Maxwell’s equations are a consequence of the definition of
the field tensor alone.

Given
Fij = ∂i Aj − ∂j Ai, (64)

where
∂i =

∂

∂xi (65)

This alone implies half of Maxwell’s equations. To show this we consider

εmkij∂kFij = 0. (66)

This is the Bianchi identity. To demonstrate this identity, we’ll have to swap indexes, employ
derivative commutation, and then swap indexes once more

εmkij∂kFij = εmkij∂k(∂i Aj − ∂j Ai)

= 2εmkij∂k∂i Aj

= 2εmkij 1
2
(
∂k∂i Aj + ∂i∂k Aj

)
= εmkij∂k∂i Ajε

mikj∂k∂i Aj

= (εmkij − εmkij)∂k∂i Aj

= 0 �

This is the 4D analogue of

∇× (∇ f ) = 0 (67)

i.e.

εαβγ∂β∂γ f = 0 (68)

Let’s do this explicitly, starting with

∥∥Fij
∥∥ =


0 Ex Ey Ez
−Ex 0 −Bz By
−Ey Bz 0 −Bx
−Ez −By Bx 0.

 (69)

For the m = 0 case we have
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ε0kij∂kFij = εαβγ∂αFβγ

= εαβγ∂α(−εβγδBδ)

= −εαβγεδβγ∂αBδ

= −2δα
δ∂αBδ

= −2∂αBα

We must then have

∂αBα = 0. (70)

This is just Gauss’s law for magnetism

∇ · B = 0. (71)

Let’s do the spatial portion, for which we have three equations, one for each α of

εαjkl∂jFkl = εα0βγ∂0Fβγ + εα0γβ∂0Fγβ + εαβ0γ∂βF0γ + εαβγ0∂βFγ0 + εαγ0β∂γF0β + εαγβ0∂γFβ0

= 2
(

εα0βγ∂0Fβγ + εαβ0γ∂βF0γ + εαγ0β∂γF0β

)
= 2ε0αβγ

(
−∂0Fβγ + ∂βF0γ − ∂γF0β

)
This implies

0 = −∂0Fβγ + ∂βF0γ − ∂γF0β (72)

Referring back to the previous expansions of 6 and 17, we have

0 = ∂0εβγµBµ + ∂βEγ − ∂γEβ, (73)

or

1
c

∂Bα

∂t
+ (∇× E)α = 0. (74)

These are just the components of the Maxwell-Faraday equation

0 =
1
c

∂B
∂t

+∇× E. (75)

6. Appendix. Some additional index gymnastics.

6.1. Transposition of mixed index tensor.

Is the transpose of a mixed index object just a substitution of the free indexes? This wasn’t ob-
vious to me that it would be the case, especially since I’d made an error in some index gymnastics
that had me temporarily convinced differently. However, working some examples clears the fog.
For example let’s take the transpose of 37.
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∥∥∥δi
j

∥∥∥T
=
∥∥∥OaiOaj

∥∥∥T

=
(∥∥∥Oji

∥∥∥ ∥∥Oij
∥∥)T

=
∥∥Oij

∥∥T
∥∥∥Oji

∥∥∥T

=
∥∥Oji

∥∥ ∥∥∥Oij
∥∥∥

=
∥∥∥OaiOaj

∥∥∥
If the transpose of a mixed index tensor just swapped the indexes we would have∥∥∥δi

j

∥∥∥T
=
∥∥∥OaiOaj

∥∥∥ (76)

From this it does appear that all we have to do is switch the indexes and we will write

δj
i = OaiOaj (77)

We can consider a more general operation

∥∥∥Ai
j

∥∥∥T
=
∥∥∥Aimgmj

∥∥∥T

=
∥∥gij

∥∥T
∥∥∥Aij

∥∥∥T

=
∥∥gij

∥∥ ∥∥∥Aji
∥∥∥

=
∥∥∥gim Ajm

∥∥∥
=
∥∥∥Aj

i

∥∥∥
So we see that we do just have to swap indexes.

6.2. Transposition of lower index tensor.

We’ve saw above that we had

∥∥∥Ai
j

∥∥∥T
=
∥∥∥Aj

i
∥∥∥ (78)∥∥∥Ai

j
∥∥∥T

=
∥∥∥Aj

i

∥∥∥ (79)

which followed by careful treatment of the transposition in terms of Aij for which we defined
a transpose operation. We assumed as well that∥∥Aij

∥∥T
=
∥∥Aji

∥∥ . (80)
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However, this does not have to be assumed, provided that gij = gij, and (AB)T = BT AT. We
see this by expanding this transposition in products of Aij and Ĝ

∥∥Aij
∥∥T

=
(∥∥gij

∥∥ ∥∥∥Aij
∥∥∥ ∥∥gij

∥∥)T

=
(∥∥∥gij

∥∥∥ ∥∥∥Aij
∥∥∥ ∥∥∥gij

∥∥∥)T

=
∥∥∥gij

∥∥∥T ∥∥∥Aij
∥∥∥T ∥∥∥gij

∥∥∥T

=
∥∥∥gij

∥∥∥ ∥∥∥Aji
∥∥∥ ∥∥∥gij

∥∥∥
=
∥∥gij

∥∥ ∥∥∥Aij
∥∥∥ ∥∥gij

∥∥
=
∥∥Aji

∥∥
It would be worthwhile to go through all of this index manipulation stuff and lay it out in

a structured axiomatic form. What is the minimal set of assumptions, and how does all of this
generalize to non-diagonal metric tensors (even in Euclidean spaces).

6.3. Translating the index expression of identity from Lorentz products to matrix form

A verification that the matrix expression 38, matches the index expression 37 as claimed is
worthwhile. It would be easy to guess something similar like ÔTĜÔĜ is instead the matrix rep-
resentation. That was in fact my first erroneous attempt to form the matrix equivalent, but is the
transpose of 38. Either way you get an identity, but the indexes didn’t match.

Since we have gij = gij which do we pick to do this verification? This appears to be dictated
by requirements to match lower and upper indexes on the summed over index. This is probably
clearest by example, so let’s expand the products on the LHS explicitly

∥∥∥gij
∥∥∥ ∥∥∥Oi

j

∥∥∥T ∥∥gij
∥∥ ∥∥∥Oi

j

∥∥∥ =
(∥∥∥Oi

j

∥∥∥ ∥∥∥gij
∥∥∥)T ∥∥gij

∥∥ ∥∥∥Oi
j

∥∥∥
=
(∥∥∥Oi

kgkj
∥∥∥)T ∥∥gimOm

j
∥∥

=
∥∥∥Oij

∥∥∥T ∥∥Oij
∥∥

=
∥∥∥Oji

∥∥∥ ∥∥Oij
∥∥

=
∥∥∥OkiOkj

∥∥∥
This matches the

∥∥δi
j
∥∥ that we have on the RHS, and all is well.
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