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1. Reading.

Covering chapter 4 material from the text [1].
Covering lecture notes pp.103-113: variational principle for the electromagnetic field and the

relevant boundary conditions (103-105); the second set of Maxwell’s equations from the varia-
tional principle (106-108); Maxwell’s equations in vacuum and the wave equation in the non-
relativistic Coulomb gauge (109-111)

2. Review. Our action.

S = Sparticles + Sinteraction + SEM field = ∑
A

∫
xi

A(τ)
ds(−mAc)−∑

A

eA

c

∫
dxi

A Ai(xA)−
1

16πc

∫
d4xFijFij.

Our dynamics variables are {
xi

A(τ) A = 1, · · · , N
Ai(x) A = 1, · · · , N

(1)

We saw that the interaction term could also be written in terms of a delta function current,
with

Sinteraction = − 1
c2

∫
d4xji(x)Ai(x), (2)

and
ji(x) = ∑

A
ceA

∫
dxi

Aδ4(x− xA(τ)). (3)

Variation with respect to xi
A(τ) gave us

mc
dui

A
ds

=
e
c

uj
AFij. (4)

Note that it’s easy to get the sign mixed up here. With our (+,−,−,−) metric tensor, if the
second index is the summation index, we have a positive sign.

Only the Sparticles and Sinteraction depend on xi
A(τ).
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3. The field action variation.

Today: We’ll find the EOM for Ai(x). The dynamical degrees of freedom are Ai(x, t)

S[Ai(x, t)] = − 1
16πc

∫
d4xFijFij − 1

c2

∫
d4xAi ji. (5)

Here ji are treated as “sources”.
We demand that

δS = S[Ai(x, t) + δAi(x, t)]− S[Ai(x, t)] = 0 + O(δA)2. (6)

We need to impose two conditions.

• At spatial ∞, i.e. at |x| → ∞, ∀t, we’ll impose the condition

Ai(x, t)
∣∣∣
|x|→∞

→ 0. (7)

This is sensible, because fields are created by charges, and charges are assumed to be local-
ized in a bounded region. The field outside charges will→ 0 at |x| → ∞. Later we will treat
the integration range as finite, and bounded, then later allow the boundary to go to infinity.

• at t = −T and t = T we’ll imagine that the values of Ai(x,±T) are fixed.

This is analogous to x(ti) = x1 and x(t f ) = x2 in particle mechanics.

Since Ai(x,±T) is given, and equivalent to the initial and final field configurations, our
extremes at the boundary is zero

δAi(x,±T) = 0. (8)

PICTURE: a cylinder in spacetime, with an attempt to depict the boundary.

4. Computing the variation.

δS[Ai(x, t)] = − 1
16πc

∫
d4xδ(FijFij)− 1

c2

∫
d4xδ(Ai)ji. (9)

Looking first at the variation of just the F2 bit we have

δ(FijFij) = δ(Fij)Fij + Fijδ(Fij)

= 2δ(Fij)Fij

= 2δ(∂i Aj − ∂j Ai)Fij

= 2δ(∂i Aj)Fij − 2δ(∂j Ai)Fij

= 2δ(∂i Aj)Fij − 2δ(∂i Aj)Fji

= 4δ(∂i Aj)Fij

= 4Fij∂
iδ(Aj).
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Our variation is now reduced to

δS[Ai(x, t)] = − 1
4πc

∫
d4xFij∂

iδ(Aj)− 1
c2

∫
d4xjiδ(Ai)

= − 1
4πc

∫
d4xFij ∂

∂xi δ(Aj)−
1
c2

∫
d4xjiδ(Ai).

We can integrate this first term by parts

∫
d4xFij ∂

∂xi δ(Aj) =
∫

d4x
∂

∂xi

(
Fijδ(Aj)

)
−
∫

d4x
(

∂

∂xi Fij
)

δ(Aj)

The first term is a four dimensional divergence, with the contraction of the four gradient ∂i
with a four vector Bi = Fijδ(Aj).

Prof. Poppitz chose dx0d3x split of d4x to illustrate that this can be viewed as regular old spatial
three vector divergences. It is probably more rigorous to mandate that the four volume element is
oriented d4x = (1/4!)εijkldxidxjdxkdxl , and then utilize the 4D version of the divergence theorem
(or its Stokes Theorem equivalent). The completely antisymmetric tensor should do most of the
work required to express the oriented boundary volume.

Because we have specified that Ai is zero on the boundary, so is Fij, so these boundary terms
are killed off. We are left with

δS[Ai(x, t)] = − 1
4πc

∫
d4xδ(Aj)∂iFij − 1

c2

∫
d4xjiδ(Ai)

=
∫

d4xδAj(x)
(
− 1

4πc
∂iFij(x)− 1

c2 ji
)

= 0.

This gives us

∂iFij =
4π

c
jj (10)

5. Unpacking these.

Recall that the Bianchi identity

εijkl∂jFkl = 0, (11)

gave us

∇ · B = 0 (12)

∇× E = −1
c

∂B
∂t

. (13)

How about the EOM that we have found by varying the action? One of those equations is
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∂αFα0 =
4π

c
j0 = 4πρ, (14)

since j0 = cρ.
Because

Fα0 = (E)α, (15)

we have
∇ · E = 4πρ. (16)

The messier one to deal with is

∂iFiα =
4π

c
jα. (17)

Splitting out the spatial and time indexes for the four gradient we have

∂iFiα = ∂βFβα + ∂0F0α

= ∂βFβα − 1
c

∂(E)α

∂t

The spatial index tensor element is

Fβα = ∂β Aα − ∂α Aβ

= −∂Aα

∂xβ
+

∂Aβ

∂xα

= εαβγBγ,

so the sum becomes

∂iFiα = ∂β(ε
αβγBγ)− 1

c
∂(E)α

∂t

= εβγα∂βBγ − 1
c

∂(E)α

∂t

= (∇× B)α − 1
c

∂(E)α

∂t
.

This gives us
4π

c
jα = (∇× B)α − 1

c
∂(E)α

∂t
, (18)

or in vector form

∇× B− 1
c

∂E
∂t

=
4π

c
j. (19)

Summarizing what we know so far, we have
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∂iFij =
4π

c
jj

εijkl∂jFkl = 0
(20)

or in vector form

∇ · E = 4πρ

∇× B− 1
c

∂E
∂t

=
4π

c
j

∇ · B = 0

∇× E +
1
c

∂B
∂t

= 0

(21)

6. Speed of light

Claim : “c” is the speed of EM waves in vacuum.
Study equations in vacuum (no sources, so ji = 0) for Ai = (φ, A).

∇ · E = 0 (22)

∇× B =
1
c

∂E
∂t

(23)

where

E = −∇φ− 1
c

∂A
∂t

(24)

B = ∇×A (25)

In terms of potentials

0 = ∇× (∇×A)

= ∇× B

=
1
c

∂E
∂t

=
1
c

∂

∂t

(
−∇φ− 1

c
∂A
∂t

)
= −1

c
∂

∂t
∇φ− 1

c2
∂2A
∂t2

Since we also have

∇× (∇×A) = ∇(∇ ·A)−∇2A, (26)

some rearrangement gives
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∇(∇ ·A) = ∇2A− 1
c

∂

∂t
∇φ− 1

c2
∂2A
∂t2 . (27)

The remaining equation ∇ · E = 0, in terms of potentials is

∇ · E = −∇2φ− 1
c

∂∇ ·A
∂t

(28)

We can make a gauge transformation that completely eliminates 28, and reduces 27 to a wave
equation.

(φ, A)→ (φ′, A′) (29)

with

φ = φ′ − 1
c

∂χ

∂t
(30)

A = A′ +∇χ (31)

Can choose χ(x, t) to make φ′ = 0 (∀φ∃χ, φ′ = 0)

1
c

∂

∂t
χ(x, t) = φ(x, t) (32)

χ(x, t) = c
∫ t

−∞
dt′φ(x, t′) (33)

Can also find a transformation that also allows ∇ ·A = 0

Q: What would that second transformation be explicitly?

A: To be revisited next lecture, when this is covered in full detail.
This is the Coulomb gauge

φ = 0 (34)
∇ ·A = 0 (35)

From 27, we then have

1
c2

∂2A′

∂t2 −∇2A′ = 0 (36)

which is the wave equation for the propagation of the vector potential A′(x, t) through space
at velocity c, confirming that c is the speed of electromagnetic propagation (the speed of light).
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