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1. Reading.

Covering chapter 8 material from the text [1].
Covering lecture notes pp. 136-146: the Lienard-Wiechert potentials (143-146) [Wednesday,

Mar. 9...]

2. Fields from the Lienard-Wiechert potentials

(We finished off with the scalar and vector potentials in class, but I’ve put those notes with the
previous lecture).

To find E and B need
∂tr
∂t , and ∇tr(x, t)

where

t− tr = |x− xc(tr)| (1)

implicit definition of tr(x, t)
In HW5 you’ll show

∂tr

∂t
=

|x− xc(tr)|
|x− xc(tr)| − vc

c · (x− xc(tr))
(2)

∇tr =
1
c

x− xc(tr)

|x− xc(tr)| − vc
c · (x− xc(tr))

(3)

and then use this to show that the electric and magnetic fields due to a moving charge are

E(x, t) =
eR

(R · u)3

(
(c2 − v2

c)u + R× (u× ac)
)

(4)

=
R
R
× E (5)

u = c
R
R
− vc, (6)

where everything is evaluated at the retarded time tr = t− |x− xc(tr)|/c.
This looks quite a bit different than what we find in §63 (63.8) in the text, but a little bit of

expansion shows they are the same.
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3. Check. Particle at rest.

With

xc = x0

Xk
c = (ct, x0)

|x− xc(tr)| = c(t− tr)

Figure 1: Retarded time for particle at rest.

As illustrated in figure (1) the retarded position is

xc(tr) = x0, (7)

for
u =

x− x0

|x− x0|
c, (8)

and

E = e ����|x− x0|
(c|x− x0|)3 c3 x− x0

����|x− x0|
, (9)

which is Coulomb’s law

E = e
x− x0

|x− x0|3
(10)
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4. Check. Particle moving with constant velocity.

This was also computed in full in homework 5. The end result was

E = e
x− vt

|x− vt|3
1− β2(

1− (x×β)2

|x−vt|2
)3/2 (11)

Writing

x× β

|x− vt| =
1
c
(x− vt)× v
|x− vt|

=
|v|
c
(x− vt)× v
|x− vt||v|

We can introduce an angular dependence between the charge’s translated position and its
velocity

sin2 θ =

∣∣∣∣v× (x− vt)
|v||x− vt|

∣∣∣∣2, (12)

and write the field as

E = e
x− vt

|x− vt|3︸ ︷︷ ︸
∗

1− β2(
1− v2

c2 sin2 θ
)3/2 (13)

Observe that ∗ = Coulomb’s law measured from the instantaneous position of the charge.
The electric field E has a time dependence, strongest when perpendicular to the instantaneous

position when θ = π/2, since the denominator is smallest (E largest) when v/c is not small. This
is strongly θ dependent.

Compare

|E(θ = π/2)| − |E(θ = π/2 + ∆θ)|
|E(θ = π/2)| ≈

1
(1−v2/c2)3/2 − 1

(1−v2/c2(1−(∆θ)2))3/2

1
(1−v2/c2)3/2

= 1−
(

1− v2/c2

1− v2/c2 + v2/c2(∆θ)2

)3/2

= 1−

 1

1 + v2/c2 (∆θ)2

1−v2/c2

3/2

Here we used

sin(θ + π/2) =
ei(θ+π/2) − e−i(θ+π/2)

2i
= cos θ (14)
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and

cos2 ∆θ ≈
(

1− (∆θ)2

2

)2

≈ 1− (∆θ)2 (15)

FIXME: he writes:

∆θ ≤
√

1− v2

c2 (16)

I don’t see where that comes from.
FIXME: PICTURE: Various E’s up, and v perpendicular to that, strongest when charge is mov-

ing fast.

5. Back to extracting physics from the Lienard-Wiechert field equations

Imagine that we have a localized particle motion with

|xc(tr)| < l (17)

The velocity vector

u = c
x− xc(tr)

|x− xc|
(18)

doesn’t grow as distance from the source, so from 4, we have for |x| � l

B, E ∼ 1

|x|2
(· · · ) + 1

x
(acceleration term) (19)

The acceleration term will dominate at large distances from the source. Our Poynting magni-
tude is

|S| ∼ |E× B| ∼ 1
x2 (acceleration)2. (20)

We can ask about ∮
d2σ · S ∼ R2 1

R2 (acceleration)2 ∼ (acceleration)2 (21)

In the limit, for the radiation of EM waves

lim
R→∞

∮
d2σ · S 6= 0 (22)

The energy flux through a sphere of radius R is called the radiated power.
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