PHY450H1S. Relativistic Electrodynamics Lecture 19 (Taught by Prof.
Erich Poppitz). Lienard-Wiechert potentials.

Originally appeared at:
http://sites.google.com/site/peeterjoot/math2011/relativisticElectrodynamicsL19.pdf

Peeter Joot — peeter.joot@gmail.com
Mar 15, 2011  relativisticElectrodynamicsL19.tex

1. Reading.

Covering chapter 8 material from the text [1].
Covering lecture notes pp. 136-146: the Lienard-Wiechert potentials (143-146) [Wednesday,
Mar. 9...]

2. Fields from the Lienard-Wiechert potentials

(We finished off with the scalar and vector potentials in class, but I've put those notes with the
previous lecture).

To find E and B need
%, and Vt,(x, t)
where
implicit definition of t,(x, t)
In HW5 you’ll show
% — ’X—Xc(tr)| (2)
at |X_Xc(tr) _%’ (X_Xc(t;/))
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Vi, = 3)

c Ix — xc(t)]| — . (x — xc(t))

and then use this to show that the electric and magnetic fields due to a moving charge are

E(x,f) = (;11)3 (2= v2)u+R x (uxa)) @
= R XE (5)
u=cp Ve (6)

where everything is evaluated at the retarded time t, = t — |x — x.(t,)|/c.
This looks quite a bit different than what we find in §63 (63.8) in the text, but a little bit of
expansion shows they are the same.


http://www.physics.utoronto.ca/~poppitz/epoppitz/PHY450_files/RelEMpp136-146.pdf

3. Check. Particle at rest.

With

XC = XO
X]g = (ct,xo)
Ix —xc(t)| = c(t — t;)

Figure 1: Retarded time for particle at rest.

As illustrated in figure (1) the retarded position is

xc(tr) = Xo, (7)
for

. X — Xp
and

_Ix==xp] 3 x—Xo
B = llx—wlP el ¥
which is Coulomb’s law
X — Xp



4. Check. Particle moving with constant velocity.

This was also computed in full in homework 5. The end result was

. @2
E=e Vt3 = F 3/2 (11)
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|x—vt|?
Writing

xxB 1(x—vt)xv
Ix—vt| ¢ |x— vt

|v| (x —vt) X v
¢ |x—vt||v|

We can introduce an angular dependence between the charge’s translated position and its
velocity

2
sin2f — v X (x—vt) ) (12)
[v||x — vt|
and write the field as
X — vt 1-— ﬁz
e|x_vt‘3 ., % (13)
N _ (1 — % sin 9)

Observe that * = Coulomb’s law measured from the instantaneous position of the charge.
The electric field E has a time dependence, strongest when perpendicular to the instantaneous
position when 6 = 71/2, since the denominator is smallest (E largest) when v/c is not small. This
is strongly 6 dependent.
Compare

IE(0 = 7/2)| — [E(8 = 71/2 + A))]
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Here we used

pi(0+7/2) _ o—i(0+7/2)
sin(0 + 7t/2) = % = cosf

(14)



and

AG)2\?
cos® A ~ <1 _ ! 5) ) ~1— (A8)? (15)
FIXME: he writes:
2
AD < y[1— ::77 (16)

I don’t see where that comes from.
FIXME: PICTURE: Various E’s up, and v perpendicular to that, strongest when charge is mov-
ing fast.

5. Back to extracting physics from the Lienard-Wiechert field equations

Imagine that we have a localized particle motion with

Ixc(tr)] <1 (17)
The velocity vector
= CLC(”) (18)
X — x|

doesn’t grow as distance from the source, so from 4, we have for |x| > I

1 1
B,E ~ W( )+ ;(acceleration term) (19)
X

The acceleration term will dominate at large distances from the source. Our Poynting magni-
tude is

1
|S| ~ |E x B| ~ ;(acceleration)z. (20)
We can ask about
1
j{ d*c-S ~ R2ﬁ(acceleration)2 ~ (acceleration)? (21)
In the limit, for the radiation of EM waves
lim ¢ d?c-S #0 (22)
R—o00

The energy flux through a sphere of radius R is called the radiated power.

References

[1] L.D. Landau and E.M. Lifshitz. The classical theory of fields. Butterworth-Heinemann, 1980. 1



