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1. Reading.

No reading from [1] appears to have been assigned, but relevant stuff can be found in chapter
1.

From Professor Poppitz’s lecture notes, we have reading: pp.12-26: spacetime, spacetime
points, worldlines, interval (12-14); invariance of infinitesimal intervals (15-17); geometry of space-
time, lightlike, spacelike, timelike intervals, and worldlines (18-22); proper time (23-24); invariance
of finite intervals (25-26).

2. Followup for questions from last lecture.

Yes we have speed of light different in media. Example, speed of light in water is 3/4 vacuum
speed due to high index of refraction. Also note that we can have effects like an electron moving
in water can constantly emit light. This is called Cerenkov radiation.

3. Einstein’s relativity principle

1. Replace Galilean transformations between coordinates in differential inertial frames with
Lorentz transforms between (x, t). Postulate that these constitute the symmetries of physics.
Recall that Galilean transformations are symmetries of the laws of non-relativistic physics.

Comment made that the symmetries impose the dynamics, and the symmetries provided
the form of the Lagrangian in classical physics. Go back and revisit this.

2. Speed of light c is the same in all inertial frames. Phrased in this form, relativity leads to
“relativity of simultaneity”.

PICTURE: Three people on a platform, at positions 1, 3, 2, all with equidistant separation.
This stationary frame is labeled O. 1 and 2 flash light signals at the same time and in frame
O the reception of the light signal by 3 is observed as arriving at 3 simultaneously.

Now introduce a moving frame with origin O′ moving along the positive x axis. To a sta-
tionary observer in O′ the three guys are seen to be moving in the −x direction. The middle
guy (3) is eventually going to be seen to receive the light signal by this O′ observer, but less
time is required for the light to get from 1 to 3, and more time is required for the light to
get from 2 to 1 (3 is moving away from the light according to the O′ observer). Because the
speed of light is perceived as constant for all observers, the perception is then that the light
must arrive at 3 at different times.
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This is very non-intuitive since we are implicitly trained by our surroundings that Galilean
transformations govern mechanical behavior.

In O, 1 and 2 send light signals simultaneously while in O′ 1 sends light later than 2. The
conclusion, rather surprisingly compared to intuition, is that simultaneity is relative.

4. Spacetime

We will need to develop some tools to work with these concepts in a concrete fashion. It is
convenient to combine space R3 and time R1 into a 4d “spacetime”. In [1] this is called fictitious
spacetime for reasons that are not clear. Points in this space are also called “events”, or “spacetime
points”, or “world point”. The “world line” is the trajectory for a particle in spacetime.

PICTURE: R3 represented as a plane, and t up. For every point we can plot an x(t) in this
combined space.

5. Spacetime intervals for light like behaviour.

Consider two frames, one moving along the x-axis at a (constant) rate not yet specified.
“events” have coordinates (t, x) in O and (t′, x′) in O′. Because we now have to model the

mathematics without a notion of simultaneity, we must now also introduce different time coordi-
nates t, and t′ in the two frames.

Let’s imagine that at at time t1 light is emitted at x1, and at time t2 this light is absorbed. Our
space time events are then (t1, x1) and (t2, x2). In the O frame, the light will go a distance c(t2− t1).
This same distance can also be expressed as√

(x1 − x2)2. (1)

These are equal. It is convenient to work without the square roots, so we write

(x1 − x2)
2 = c2(t2 − t1)

2 (2)

Or

c2(t2 − t1)
2 − (x1 − x2)

2 = c2(t2 − t1)
2 − (x1 − x2)

2 − (y1 − y2)
2 − (z1 − z2)

2 = 0. (3)

We can repeat the same argument for the primed frame. In this frame, at time t′1 light is emitted
at x′1, and at time t′2 this light is absorbed. Our space time events in this frame are then (t′1, x′1) and
(t′2, x′2). As above, in this O′ frame, the light will go a distance c(t′2 − t′1), with a similar Euclidean
distance involving x′1 and x′2. That is

c2(t′2 − t′1)
2 − (x′1 − x′2)

2 = c2(t′2 − t′1)
2 − (x′1 − x′2)

2 − (y′1 − y′2)
2 − (z′1 − z′2)

2 = 0. (4)

We get zero for this quantity in any inertial frame 1. This quantity is found to be very impor-
tant, and want to give this a label. We call this the “interval”, or the “spacetime interval”, and
write this as follows:

s2
12 = c2(t2 − t1)

2 − (r2 − r1)
2 (5)

This is a quantity calculated between any two spacetime points with coordinates (t2, r2) and
(t1, r1) in some frame.
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So far we have argued that c being the same in any two frames implies that spacetime events
“separated by a zero interval” in one frame are “separated by a zero interval” in any other frame.

6. Invariance of infinitesimal intervals.

For events that are infinitesimally close to each other. i.e. t2 − t1 and r2 − r1 are small (in-
finitesimal), it is convient to denote t2 − t1 and r2 − r1 by dt and dr respectively. We can then
define

ds2
12 = c2dt2 − dr2, (6)

or
ds =

√
c2dt2 − dr2. (7)

We will use this a lot.
We have learned that if s12 = 0 in one frame, then s′12 = 0 in any other frame. We generally

expect that there is a relation s′12 = F(s12) between the intervals in two frames. So far we have
learned that F(0) = 0.

Let’s now consider the case where both of these intervals are infinitesimal. Then we can write

ds′12 = F(ds12) = F(0) + F′(0)ds12 + · · · = F′(0)ds12 + · · · . (8)

We will neglect terms O(ds12)
2 and higher. Thus equality of zero intervals between two frames

implies that

ds′12 ∝ ds12. (9)

Now we must invoke an assumption (principle) of homogeneity of time and space and isotropy
of space. This interval should not depend on where these events take place, or on the time that
the measurements were performed. If this is the case then we conclude that the proportional-
ity constant relating the two intervals is not a function of position or space. We argue that this
proportionality can then only be a function of the (absolute) relative speed between the frames.

We write this as
ds′12 = F(v12)ds12 (10)

This argument can be turned around and we say that ds12 = F̃(v12)ds′12. Thus F̃ = F, because
there is no distinction between O and O′. We want to conclude that

ds12 = F(v12)ds′12 = F(v12)F̃(v12)ds12 (11)

and then conclude that F = F̃ = 1. This argument is to be continued. To complete this
conclusion we will need to perform some additional math, once we cover finite intervals.
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