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1. Reading.

Covering chapter 8 material from the text [1].
Covering lecture notes pp. 147-165: EM fields of a moving source (147-148+HW5); a particle at

rest (148); a constant velocity particle (149-152); behavior of EM fields “at infinity” for a general-
worldline source and radiation (152-153) [Tuesday, Mar. 15]; radiated power (154); fields in the
“wave zone” and discussions of approximations made (155-159); EM fields due to electric dipole
radiation (160-163); Poynting vector, angular distribution, and power of dipole radiation (164-165)
[Wednesday, Mar. 16...]

2. Multipole expansion of the fields.

Ai(x, t) =
1
c

∫
d3x′ ji
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x′, t− |x− x′|

c

)
1

|x− x′| (1)

This integral is over the region of space where the sources ji are non-vanishing, but this region
is limited. The value |x′| ≤ l, so we can expand the denominator in multipole expansion

1
|x− x′| =

1√
(x− x′)2

=
1√

x2 + x′2 − 2x · x′
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1
|x|

1√
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x2 − 2 x̂
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|x|
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′
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.

Neglecting all but the first order term in the expansion we have

1
|x− x′| ≈

1
|x| +

x

|x|3
· x′. (2)
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Similarly, for the retarded time we have

t− |x− x′|
c

≈ t− |x|
c

(
1− x · x′

|x|2

)

= t− |x|
c

+
x · x′
c|x|

We can now do a first order Taylor expansion of the current ji about the retarded time

ji
(

x′, t− |x|
c

+
x · x′
c|x| + · · ·

)
≈ ji

(
x′, t− |x|

c

)
+

∂ji

∂t

(
x, t− |x|

c

)
x · x′
c|x| . (3)

To elucidate the physics, imagine that time dependence of the source is periodic with angular
frequency ω0. For example:

ji = A(x)e−iωt. (4)

Here we have
∂ji

∂t
= −iω0 ji. (5)

So, for the magnitude of the second term we have∣∣∣∣∂ji

∂t
x · x′
c|x|

∣∣∣∣ = ω0

∣∣∣∣ji x · x′
c|x|

∣∣∣∣. (6)

Requiring second term much less than the first term means∣∣∣∣ω0
x · x′
c|x|

∣∣∣∣� 1. (7)

But recall ∣∣∣∣x · x′c|x|

∣∣∣∣ ≤ l, (8)

so for our Taylor expansion to be valid we have the following constraints on the angular ve-
locity and the position vectors for our charge and measurement position∣∣∣∣ω0

x · x′
c|x|

∣∣∣∣ ≤ ω0l
c
� 1. (9)

This is a physical requirement size of the wavelength of the emitter (if the wavelength doesn’t
meet this requirement, this expansion does not work). The connection to the wavelength can be
observed by noting that we have

ω0

c
= k

2πk =
1
λ

=⇒ ω0

c
∼ 1

λ
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3. Putting the pieces together. Potentials at a distance.

Moral: We’ll utilize two expansions (we need two small parameters)

1. |x| � l

2. λ� l

Plugging into our current

Ai(x, t) ≈ 1
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(10)
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The first term is the total charge evaluated at the retarded time. In the second term (and in the
third, where it’s derivative is taken) we have∫

d3x′x′ρ
(

x′, t− |x|
c

)
= d(tr), (12)

which is the dipole moment evaluated at the retarded time tr = t− |x|/c. In the last term we
can pull out the time derivative (because we are integrating over x′)
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For the spatial components of the current lets just keep the first term

Aα(x, t) ≈ 1
c|x|
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(
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)
There’s two tricks used here. One was writing the unit vector eα = ∇xα. The other was use of

the continuity equation ∂ρ/∂t +∇j = 0. This first trick was mentioned as one of the few tricks of
physics that will often be repeated since there aren’t many good ones.

With the first term vanishing on the boundary (since ji is localized), and pulling the time
derivatives out of the integral, we can summarize the dipole potentials as
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A0(x, t) =
Q
(

t− |x|c
)

|x| +
x · d

(
t− |x|c

)
|x|3

+
x · ḋ
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c|x| ḋ
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(13)

4. Example: Electric dipole radiation

PICTURE: two closely separated oppositely charges, wiggling along the line connecting them
(on the z-axis). −q at rest, while +q oscillates.

z+(t) = z0 + a sin ωt. (14)

Since we’ve put the −q charge at the origin, it has no contribution to the dipole moment, and
we have

d(t) = ezq(z0 + a sin ωt). (15)

Thus

A0(x, t) =
1

|x|3
x · d

(
t− |x|

c

)
+

1

c|x|2
x · ḋ

(
t− |x|

c

)
(16)

A(x, t) =
ḋ
(

t− |x|c
)

c|x| (17)

so with tr = t− |x|/c, and z = x · ez in the dipole dot product, we have

A0(x, t) =
zq

|x|3
(z0 + a sin(ωtr)) +

zq
c|x|2

aω cos(ωtr) (18)

A(x, t) =
1

c|x|ezqaω cos(ωtr) (19)

These hold provided |x| � (z0, a) and ωl/c � 1. Recall that ωλ = c/2π, which has dimen-
sions of velocity.

FIXME: think through and justify ωl = v.
Observe that ωl ∼ v so this is a requirement that our charged positive particle is moving with

|v|/c� 1.
Now we’ll take derivatives. The first term of the scalar potential will be ignored since the

1/|x|2 is non-radiative.

E = −∇A0 − 1
c

∂A
∂t

= − zaωq

|x|2c
(−ω sin(ωtr))

(
−1

c
∇|x|

)
− 1

c2|x|ezqaω2(− sin(ωtr)).
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We’ve used ∇tr = −∇|x|/c, and ∇|x| = x̂, and ∂ttr = 1.

E =
qaω2

c2|x| sin(ωtr)

(
ez −

z
|x| x̂

)
(20)

So,

|S| ∼ ω4 (21)

The power is proportional to ω4. Higher frequency radiation has more power : this is why
the sky is blue! It all comes from the fact that the electric field is proportional to the squared
acceleration (∼ ω2).
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