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1. Reading.

Covering §32, §33 of chapter 4 in the text [1].

Covering lecture notes pp. 169-172: spacetime translation invariance of the EM field action and
the conservation of the energy-momentum tensor (170-172); properties of the energy-momentum
tensor (172.1); the meaning of its components: energy.

2. Placeholder.

I have no class notes for this lecture, as traffic conspired against me and I missed all but the
last 5 minutes (a very frustrating drive!) Here’s my own walk through of the content that we must
have covered, much of which I did as part of problem set 6 preparation.

3. Total derivative of the Lagrangian density.

Rather cleverly, our Professor avoided the spacetime translation arguments of the text. In-
spired by an approach possible in classical mechanics to find that we have a conserved quantity
derivable from a force law, he proceeds directly to taking the derivative of the Lagrangian density
(see previous lecture notes for details building up to this).

I'll proceed in exactly the same fashion.


http://www.physics.utoronto.ca/~poppitz/epoppitz/PHY450_files/RelEMpp166-180.pdf
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Multiplying through by c and renaming our derivative index using a delta function we have
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Knowing the end goal, a quantity that is expressed in terms of F'/ let’s raise the k indexes, and
any of the A;’s that are along side of those
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Since the operator F"/9,,0; is a product of symmetric and antisymmetric tensors (or operators),

the middle term is zero, and we are left with
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This provides the desired conservation relationship
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4. Unpacking the tensor

4.1. Energy term of the stress energy tensor.
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The spatially indexed field tensor components are
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A final bit of assembly gives us T%
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4.2. Momentum terms of the stress energy tensor.

For the spatial TX’ components we have
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So we have

1
T = —(ExB)* = —. 7
4n( x B) : 7)

4.3. Symmetry

It is simple to show that T¥" is symmetric
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4.4. Pressure and shear terms.

Let’s now expand TF?, starting with the diagonal terms T**. Because this repeated index isn’t
summed over, things get slightly irregular, so it’s easier to drop the abstraction and just pick a
specific «, say, « = 1. Then we have
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For the magnetic components above we have for example
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Clearly, the other diagonal terms follow the same pattern, and we can do a cyclic permutation
of coordinates to find
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For the off diagonal terms, let’s pick T2 and expand that. We have
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Again, with cyclic permutation of the coordinates we have
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In class these were all written in the compact notation
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