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1. Reading.

Still covering chapter 1 material from the text [1].
Covering more from Professor Poppitz’s lecture notes: geometry of spacetime, lightlike, space-

like, timelike intervals, and worldlines (18-22); proper time (23-24); invariance of finite intervals
(25-26).

2. Geometry of spacetime: lightlike, spacelike, timelike intervals.

Last time we introduced the (squared) interval

s2
12 = c2dt2 − dr2. (1)

This spacetime interval is of great importance to relativity, and is as important as the spa-
tial distance |r2 − r1| in Newtonian physics. This distance determines the Euclidean geometry of
space.

Similarily, the interval 1 determines the “distance” in space time.
Symmetries are the guiding principles of physics, and this quantity we will see to be related to

spacetime symmetries. Last time we argued that the constancy of the speed of light in all frames
implies that if s2

12 = 0 in one frame, then s′12
2 = 0.

We were considering infinitesmimal 1, 2 separation with ds = F(V)ds′ where V is the relative
speed of the two frames. Relating the two incremental intervals we have a function F and its
inverse

ds′ = ˜F(V)ds = F̃(V)F(V)ds,

But we can also argue that

F̃ = F by O′ ∼ O,

and thus that

F2 = 1,
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or

F = ±1.

Since we wish this to hold for V = 0, we require the positive root, and can cocnclude that
F = 1.

Note that ds (or s12) requires a sign convention, since it is s2
12 = c2(t2 − t1)

2 − (r2 − r1)
2 that is

the object which (we’ll argue) is invariant.
This is similar to the Euclidean case where it is the quantity (r2 − r1)

2 is invariant, and our
convention is to always pick the positive sign.

Possible conventions for s12 are

s12 =
√

c2(t2 − t1)2 − (r2 − r1)2, (2)

if s2
12 > 0, and when s2

12 < 0, the alternate convention is

s12 = i
√
|s12|2. (3)

Later we will argue that ds = ds′ implies s12 = s′12 for any finite interval.

3. Relativity principle in mathematical formulation.

The Relativity principle (in mathematical formulation): the spacetime interval s12, ∀1, 2 (space-
time points) is the same in all frames.

In other words, the transformations (t, r)→ (t′, r′) have to leave s2
12 invariant for all 1 and 2.

These transformations, that is to say these coordinate transformations

(t, r)→ (t′, r′)
O→ O′

leave the laws of nature invariant.
We will see later how such invariance, like the spatial invariance in Newtonian physics, defines

the dynamics of spacetime. We will also answer the question about what are these transformations
that leave the interval invariant. In the Newtonian case those transformations were rotations, and
we will be looking for similar transformations. The negative sign in the spacetime interval will
complicate things a bit, but not actually too much.

Next week: we’ll find the “Lorentz transformation”.

4. Geometry of spacetime.

We now want to study a bit of the geometry of spacetime implied by s2
12 = c2(t2 − t1)

2 − (r2 −
r1)

2. Consider two spacetime points 1,2, where (t1, r1), (t2, r2) are points in some frame.
PICTURE: two points plotted on the x-axis, with time t1 = 0, and t = t2
The points are

1. (0, 0)

2. (t, x, 0, 0)
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The interval is

s2
12 = c2t2 − x2 (4)

PICTURE: “flat” light cone. 2d cross-section of space time surface c2t2 = x2 + y2.
PICTURE: conic light cone. 3d (2 space + 1 time) cross-section of space time surface c2t2 =

x2 + y2. One diagonal for the tragectory ct = −x, and another for ct = x. The bottom section
is the past light cone, since light that is absorbed at the origin must have been emmitted at some
point in the past. Similarily, light emmitted from the origin, takes tragectories on the future light
cone.

Observe that on the light cone, s2
12 = 0. The intervals s2

12 = 0 separates any given set of
spacetime points into “lightlike”, “spacelike”, and “timelike” regions.

For events (or spacetime points) separated by a timelike interval, there always exists a frame
such that the occur at same point in space (since s2

12 = c2t2 − r2 > 0 (region II) it is consistent to
imagine that there exists a frame where r′ = 0 and s2

12 = c2t2 > 0. This is very much like we can
always find a rotation in Euclidean space that orients two points so that they lie along the x (or
any other arbitrary) axis.

We haven’t yet proven this, but will see it shortly. What we will see is that we can nver make
these two events have the same time (t′ 6= 0). This is because if we make t′ = 0 we will get a
negative interval in some frame.

For points in spacetime separated by spacelike intervals, one can always choose a frame such
that they occur at same t. (i.e. for us t′ = 0). Since s2

12 = c2t2 − r2 < 0, s2
12 = −r2 < 0.

Similar to light rays that move along the light cone, particles that move at speeds less than the
speed of light propagate along worldlines within region II (in the interior of the light cone). At at
arbitrary point in the worldline of a particle draw a 45 degree cone. Tangent to world line should
lie inside the fugure lightcone of that space time point.

4.1. Proper time.

PICTURE4: velocity at (t, x) = v (say). Consider an inertial frame with speed v, centered at the
momentary position of the particle. Call this the primed frame. In this frame ds2 = c2dt′2 (particle
is at rest in this frame).

In the original frame ds2 = c2dt2 − dx2. Since these are equal we have

c2dt2 − dx2 = c2dt′2 (5)

Dividing by c2 we have

dt′2 = dt2 − 1
c2 dx2. (6)

Here dt2 is the (squared) time elapsed in the frame where it is moving. The time elapsed in the
rest frame of the paricle, we call the “proper time”, and we have dt′ < dt because 1− v2/c2 < 1.
This is described as

More exactly, we write

dτ2 =
ds2

dt2 = dt2

(
1− 1

c2

(
dx
dt

)2
)

(7)
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In general, for noninfinitesimal dt, to find the proper time one has to integrate

τab =
1
c

∫ b

a
ds (8)

Plan for next class: Talk about causality. Derive the Lorentz transformation.
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