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1. Reading.

Still covering chapter 1 material from the text [1].
Covering Professor Poppitz’s lecture notes: nonrelativistic limit of boosts (33); number of pa-

rameters of Lorentz transformations (34-35); introducing four-vectors, the metric tensor, the in-
variant “dot-product and SO(1,3) (36-40); the Poincare group (41); the convenience of “upper”
and “lower”indices (42-43); tensors (44)

2. The Special Orthogonal group (for Euclidean space).

Lorentz transformations are like “rotations” for (t, x, y, z) that preserve (ct)2 − x2 − y2 − z2.
There are 6 continuous parameters:

• 3 rotations in x, y, z space

• 3 “boosts” in x or y or z.

For rotations of space we talk about a group of transformations of 3D Euclidean space, and call
this the S0(3) group. Here S is for Special, O for Orthogonal, and 3 for the dimensions.

For a transformed vector in 3D space we writex
y
z

→
x

y
z

′ = O

x
y
z

 . (1)

Here O is an orthogonal 3× 3 matrix, and has the property

OTO = 1. (2)

Taking determinants, we have

det OT det O = 1, (3)

and since det OT = det O, we have

(det O)2 = 1, (4)

so our determinant must be
det O = ±1. (5)
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We work with the positive case only, avoiding the transformations that include reflections.
The Unitary condition OTO = 1 is an indication that the inner product is preserved. Observe

that in matrix form we can write the inner product

r1 · r2 =
[
x1 y1 z1

] x1
y2
x3

 . (6)

For a transformed vector X′ = OX, we have X′T = XTOT, and

X′ · X′ = (XTOT)(OX) = XT(OTO)X = XTX = X · X (7)

3. The Special Orthogonal group (for spacetime).

This generalizes to Lorentz boosts! There are two differences

1. Lorentz transforms should be 4× 4 not 3× 3 and act in (ct, x, y, z), and NOT (x, y, z).

2. They should leave invariant NOT r1 · r2, but c2t2t1 − r2 · r1.

Don’t get confused that I demanded c2t2t1 − r2 · r1 = invariant rather than c2(t2 − t1)
2 − (r2 −

r1)
2 = invariant. Expansion of this (squared) interval, provides just this four vector dot product

and its invariance condition

invariant = c2(t2 − t1)
2 − (r2 − r1)

2

= (c2t2
2 − r2

2) + (c2t2
2 − r2

2)− 2c2t2t1 + 2r1 · r2.

Observe that we have the sum of two invariants plus our new cross term, so this cross term,
(-2 times our dot product to be defined), must also be an invariant.

3.1. Introduce the four vector

x0 = ct

x1 = x

x2 = y

x3 = z

Or (x0, x1, x2, x3) = {xi, i = 0, 1, 2, 3}.
We will also write

xi = (ct, r)

x̃i = (ct̃, r̃)

Our inner product is
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c2tt̃− r · r̃ (8)

Introduce the 4× 4 matrix

∥∥gij
∥∥ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (9)

This is called the Minkowski spacetime metric.
Then

c2tt̃− r · r̃ ≡
3

∑
i,j=0

x̃igijxj

=
3

∑
i,j=0

x̃igijxj

x̃0x0 − x̃1x1 − x̃2x2 − x̃3x3

Einstein summation convention . Whenever indexes are repeated that are assumed to be summed
over.

We also write

X =


x0

x1

x2

x3

 (10)

X̃ =


x̃0

x̃1

x̃2

x̃3

 (11)

G =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (12)

Our inner product

c2tt̃− r̃ · r = X̃TGX =
[
x̃0 x̃1 x̃2 x̃3]


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




x̃0

x̃1

x̃2

x̃3


Under Lorentz boosts, we have

X = ÔX′, (13)
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where

Ô =


γ −γvx/c 0 0

−γvx/c γ 0 0
0 0 1 0
0 0 0 1

 (14)

(for x-direction boosts)

X̃ = ÔX̃′ (15)

X̃T = X̃′TÔT (16)

But Ô must be such that X̃TGX is invariant. i.e.

X̃TGX = X̃′T(ÔTGÔ)X′ = X′T(G)X′ ∀X′ and X̃′ (17)

This implies

ÔTGÔ = G (18)

Such Ô’s are called “pseudo-orthogonal”.
Lorentz transformations are represented by the set of all 4× 4 pseudo-orthogonal matrices.
In symbols

ÔTGÔ = G (19)

Just as before we can take the determinant of both sides. Doing so we have

det(ÔTGÔ) = det(ÔT)det(G)det(Ô) = det(G) (20)

The det(G) terms cancel, and since det(ÔT) = det(Ô), this leaves us with (det(Ô))2 = 1, or

det(Ô) = ±1 (21)

We take the det 0 = +1 case only, so that the transformations do not change orientation (no
reflection in space or time). This set of transformation forms the group

SO(1, 3)

Special orthogonal, one time, 3 space dimensions.
Einstein relativity can be defined as the “laws of physics that leave four vectors invariant in

the

SO(1, 3)× T4

symmetry group.
Here T4 is the group of translations in spacetime with 4 continuous parameters. The complete

group of transformations that form the group of relativistic physics has 10 = 3+ 3+ 4 continuous
parameters.

This group is called the Poincare group of symmetry transforms.
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4. More notation

Our inner product is written

x̃igijxj (22)

but this is very cumbersome. The convenient way to write this is instead

x̃igijxj = x̃jxj = x̃ixi (23)

where

xi = gijxj = gjixj (24)

Note: A check that we should always be able to make. Indexes that are not summed over
should be conserved. So in the above we have a free i on the LHS, and should have a non-summed
i index on the RHS too (also lower matching lower, or upper matching upper).

Non-matched indexes are bad in the same sort of sense that an expression like

r = 1 (25)

isn’t well defined (assuming a vector space r and not a multivector Clifford algebra that is;)
Example explicitly:

x0 = g00x0 = ct

x1 = g1jxj = g11x1 = −x1

x2 = g2jxj = g22x2 = −x2

x3 = g3jxj = g33x3 = −x3

We would not have objects of the form

xixi = (ct)2 + r2 (26)

for example. This is not a Lorentz invariant quantity.

Lorentz scalar example: x̃ixi

Lorentz vector example: xi

This last is also called a rank-1 tensor.
Lorentz rank-2 tensors: ex: gij
or other 2-index objects.
Why in the world would we ever want to consider two index objects. We aren’t just trying to

be hard on ourselves. Recall from classical mechanics that we have a two index object, the inertial
tensor.

In mechanics, for a rigid body we had the energy

T =
3

∑
ij=1

Ωi IijΩj (27)
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The inertial tensor was this object

Iij =
N

∑
a=1

ma

(
δijr2

a − rai raj

)
(28)

or for a continuous body

Iij =
∫

ρ(r)
(
δijr2 − rirj

)
(29)

In electrostatics we have the quadrupole tensor, ... and we have other such objects all over
physics.

Note that the energy T of the body above cannot depend on the coordinate system in use. This
is a general property of tensors. These are object that transform as products of vectors, as Iij does.

We call Iij a rank-2 3-tensor. rank-2 because there are two indexes, and 3 because the indexes
range from 1 to 3.

The point is that tensors have the property that the transformed tensors transform as

I′ij = ∑
l,m=1,2,3

OilOjm Ilm (30)

Another example: the completely antisymmetric rank 3, 3-tensor

εijk (31)

5. Dynamics

In Newtonian dynamics we have

mr̈ = f (32)

An equation of motion should be expressed in terms of vectors. This equation is written in a
way that shows that the law of physics is independent of the choice of coordinates. We can do this
in the context of tensor algebra as well. Ironically, this will require us to explicitly work with the
coordinate representation, but this work will be augmented by the fact that we require our tensors
to transform in specific ways.

In Newtonian mechanics we can look to symmetries and the invariance of the action with
respect to those symmetries to express the equations of motion. Our symmetries in Newtonian
mechanics leave the action invariant with respect to spatial translation and with respect to rota-
tion.

We want to express relativistic dynamics in a similar way, and will have to express the action
as a Lorentz scalar. We are going to impose the symmetries of the Poincare group to determine
the relativistic laws of dynamics, and the next task will be to consider the possibilities for our
relativistic action, and see what that action implies for dynamics in a relativistic context.
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