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1. Reading.

Covering chapter 2 material from the text [1].
Covering a bit more of Professor Poppitz’s lecture notes: equation of motion, symmetries, and

conserved quantities (energy-momentum 4 vector) from relativistic particle action.
Covering lecture notes pp. 56.1-72: comments on mass, energy, momentum, and massless par-

ticles (56.1-58); particles in external fields: Lorentz scalar field (59-62); reminder of a vector field
under spatial rotations (63) and a Lorentz vector field (64-65) [Tuesday, Feb. 1]; the action for a
relativistic particle in an external 4-vector field (65-66); the equation of motion of a relativistic par-
ticle in an external electromagnetic (4-vector) field (67,68,73) [Wednesday, Feb. 2]; mathematical
interlude: (69-72): on 3x3 antisymmetric matrices, 3-vectors, and totally antisymmetric 3-index
tensor - please read by yourselves, preferably by Wed., Feb. 2 class! (this is important, well also
soon need the 4-dimensional generalization)

2. Finishing previous arguments on action and proper velocity.

For a free particle, our action is

S = −mc
∫

ds

= −mc2
∫

dt

√
1− v2

c2

Our Lagrangian is

L = −mc2

√
1− v2

c2 . (1)

We can also make a non-relativistic velocity approximation

L = −mc2

√
1− v2

c2

= −mc2
(

1− 1
2

v2

c2

)
+ O((v2/c2)2)

≈ −mc2︸ ︷︷ ︸
constant

+
1
2

mv2︸ ︷︷ ︸
Classical Lagrangian for free particle

.
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It is good to know that we recover the familiar Newtonian case when our velocities are small
enough.

Our job is to vary the action between a pair of spacetime points

(ta, xa)→ (tb, xb) (2)

The equations of motion that result from this variation, or from the Euler-Lagrange equations
that one can obtain from this variation, are

d
dt
(γv) = 0 (3)

We argued last time, by evaluating the derivatives of 3, and taking dot and cross products with
v that we also have

dv
dt

= 0 (4)

Observe that since dv/dt = 0, we also have dγ/dt = 0

dγ

dt
=

d
dt

1√
1− v2

c2

=
d
dt

1(
1− v2

c2

)3/2 (−1/2)(2)(−v · v̇)/c2

= 0.

We can therefore combine the pair of equations (after adjusting both to have dimensions of
velocity)

d
dt
(γv) = 0 (5)

d
dt
(γc) = 0, (6)

into

ui = (u0, u). (7)

Here

u0 = γc (8)
u = γv. (9)

Since we have dui/dt = 0, pre-multiplying this by γ/c does not change the equation, and we
have

0 =
1

c
√

1− v2

c2

dui

dt
. (10)
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This now puts things in a nice invariant form, with no bias towards any specific observer’s
time coordinates, and we have for the free particle

dui

ds
= 0. (11)

3. Symmetries of spacetime translation invariance.

The symmetries of S imply conservation laws. Our action has SO(1, 3) × T4 = Lorentz x
spacetime translation ≡ Poincaré group of symmetries.

Consider quantities conserved due to T4 factor

x→ x + a where a is constant (12)
t→ t + constant (13)

Observe that the Lagrangian is not a function of x, or t explicitly

L(x, v, t) = −mc

√
1− v2

c2 = L(v). (14)

A consequence from this, utilizing the Euler-Lagrange equations is that we have a zero for the
time derivative of the generalized momentum ∂L/∂v

d
dt

∂L
∂v

=
∂L
∂x

= 0, (15)

Let’s calculate that generalized momentum

∂L
∂v

=
∂

∂v

(
−mc2

√
1− v2

c2

)

=
∂

∂v

−mc2 (1/2)(−2)v/c2√
1− v2

c2


= m

v√
1− v2

c2

So our generalized momentum is

∂L
∂v

= mvγ. (16)

Evaluating the Euler-Lagrange equations above we find

0 =
d
dt

(mγv)

=
d
dt

(
mu1,2,3

)
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Recall that u0 = cγ, and that dγ/dt = 0, so we also have

d
dt

(
mui

)
= 0 (17)

and again with multiplication by γ/c we have a Lorentz invariant relation, mostly a conse-
quence of spacetime translation invariance

d
ds

(
mui

)
= 0. (18)

We define this quantity, the invariant quantity (a four vector), as the relativistic momentum

pi = mui. (19)

A relativistic particle is characterizes by a conserved 4 vector quantity pi with

p0 = mcγ (20)
p = mγv (21)

pi = (p0, p) (22)

4. Time translation invariance

L(x, v, t) = L(v) (23)

However, it helps to consider the more general case

L(x, v, t) = L(x, v) (24)

since we have no explicit time dependence.

d
dt
L(v) = ∂L

∂x
· ẋ +

∂L
∂v
· v̇

=

(
d
dt

∂L
∂v

)
· v +

∂L
∂v
· dv

dt

=
d
dt

(
∂L
∂v
· v
)

Regrouping, to pull all the derivative terms together provides the conservation identity

d
dt

(
∂L
∂v
· v−L

)
= 0. (25)

This quantity ∂L
∂v · v−L is usually identified as the Hamiltonian H, the energy, but we will call

it E here.
In our case, with the relativistic free particle Lagrangian

L = −mc2

√
1− v2

c2 , (26)
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we have

E =
∂L
∂v
· v−L

= v ·

m
1√

1− v2

c2

v

+ mc2

√
1− v2

c2

=
mv2√
1− v2

c2

+ mc2

√
1− v2

c2

=
v2 + mc2

(
1− v2

c2

)
√

1− v2

c2

=
mc2√
1− v2

c2

So we define, for the energy, a conserved quantity under time translation, we have

E = γmc2 =
mc2√
1− v2

c2

(27)

It is only with the v→ 0 that we recover the famous tee-shirt expression

E = mc2. (28)

Since we also know (from the spacetime translation) that p0 = mcγ = E/c, we get another
conserved quantity for free since (p0, p) then is also a symmetry (i.e. thus a conserved quantity)

p0 = mγc =
E
c

p = mγv

pi = (p0, p) (29)

Note that the only “mass” you ever want to talk about is “m”. This is a Lorentz scalar, and we
won’t use the old notions that mass changes with velocity or “relativistic mass”.

5. Some properties of the four momentum.

We have
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pi pi = (p0)2 − p2

= mc2γ2 −m2γ2v2

= mc2γ2
(

1− v2

c2

)
= m2c2

So we have

pi pi = m2c2 (30)

We say that the 4-vector pi represents a particle with mass m.
Since four momentum is a conserved quantity we can use this conservation property to study

relativistic collisions
PICTURE: two particles colliding with two particles resulting (particles trajectories as arrows)

pi
1 + pi

2︸ ︷︷ ︸
four momentum before

= pi
3 + pi

4︸ ︷︷ ︸
four momentum after

(31)

p =
mv√
1− v2

c2

→ 0 when m→ 0 (32)

E =
mc2√
1− v2

c2

→ 0 when m→ 0 (33)

except when |v| = c, where if you take m → 0 and |v| = c you can get anything (any values)
in such a limit (limit does not exist).

However, because

E2

c2 − p2 = m2c2 = 0 (34)

when m→ 0, E and p for a massless particle must obey E = c|p|.
Massless particles like photons (and gravitons if/when eventually measured) have lightlike 4

momentum vectors

pi pi = 0 (35)

Gravity waves haven’t been seen yet, but the LIGO and LISA (extremely large infraferometers)
experiments are expected to get some results on this in the near future.

6. Where are we?

In the notes there’s a review (see that on one’s own). We’ll also want to eventually deal with
the conservation laws in four vector form, since it will illustrate how the electric and magnetic
fields have to be transformed. We’ll get to that eventually.
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7. Interactions

In classical mechanics we have

Lkinetic =
1
2

mv2 (36)

L =
1
2

mv2 −U(r) (37)

Here U(r) is an external potential.

S = Sfree + Sinteraction =
∫

dt
1
2

mv2 +
∫

dt(−U(r, t)) (38)

The quantity U(r, t) is what we call a potential field.
What’s the simplest invariant field we can have? The simplest possibility is to have a relativis-

tic particle which interacts with an external Lorentz scalar field. We’d imagine that this is due to
some other particle or some distribution of other fields.

Recall that the scalar field under rotations (reminder)
PICTURE: a point with coordinates in a fixed and a rotated coordinate system
That point is

P = (x, y) = (x′, y′) (39)

Similarly we can define a scalar quantity (like temperature or the Coulomb potential) is then
assigned a value at each point

φ(x, y) = φ′(x′, y′) (40)

The value of this scalar in the x, y coordinates system at point P equals the value of this scalar
in the x′, y′ coordinates system at the same point P.

A Lorentz scalar field is like this, but for an event P = (ct, x) = (ct′, x′) is the same.
So, we’d have

φ(ct, x) = φ′(ct′, x′) (41)

The value of this scalar in the x, ct coordinates system at event P equals the value of this scalar
in the x′, ct′ coordinates system at the same event P in the primed frame.

Our action would then be

S = −mc
∫

ds + g
∫

dsφ(xi) (42)

Here g is a coupling constant, also called the “charge” of a particle under that scalar field.
Note that unfortunately nature hasn’t provided us with scalar fields that are stable enough to

observe in classical interactions
We do however have some scalar particles

π0, π±, k0, k± (43)

These are unstable and short ranged.
The LHC is looking for another unstable short lived scalar field (the Higgs). So we have to

unfortunately study a more complicated field, a vector field. We’ll do that next time.
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