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1. What we will discuss.

• 4-vectors: position, velocity, acceleration

• non-inertial observers
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2. Problem 1.

2.1. Statement

A particle moves on the x-axis along a world line described by

ct(σ) =
1
a

sinh(σ) (1)

x(σ) =
1
a

cosh(σ) (2)

where the dimension of the constant [a] = 1
L , is inverse length, and our parameter takes any

values −∞ < σ < ∞.
Find xi(τ), ui(τ), ai(τ).

2.2. Solution

2.2.1 Parametrize by time.

First note that we can re-parametrize x = x1 in terms of t. That is

cosh(σ) =
√

1 + sinh2(σ)

=
√

1 + (act)2

= a
√

a−2 + (ct)2

So

x(t) =
√

a−2 + (ct)2 (3)

2.2.2 Asymptotes.

Squaring and rearranging, shows that our particle is moving through half of a hyperbolic arc
in spacetime (two such paths are possible, one for strictly positive x and one for strictly negative).

x2 − (ct)2 = a−2 (4)

Observe that the asymptotes of this curve are the lightcone boundaries. Taking derivatives we
have

2x
dx

d(ct)
− 2(ct) = 0, (5)

and rearranging we have

2



dx
d(ct)

=
ct
x

=
ct√

(ct)2 + a−2

→ ±1

2.2.3 Is this timelike?

Let’s compute the interval between two worldpoints. That is

s2
12 = (ct(σ1)− ct(σ2))

2 − (x(σ1)− x(σ2))
2

= a−2(sinh σ1 − sinh σ2)
2 − a−2(cosh σ1 − cosh σ2)

2

= 2a−2 (−1− sinh σ1 sinh σ2 + cosh σ1 cosh σ2)

= 2a−2 (cosh(σ2 − σ1)− 1) ≥ 0

Yes, this is timelike. That’s what we want for a particle that is realistic moving along a world-
line in spacetime. If the spacetime interval between any two points were to be negative, we would
be talking about something of tachyon like hypothetical nature.

2.2.4 Reparametrize by proper time.

Our first task is to compute xi(τ). We have xi(σ) so we need the relation between our proper
length τ and the worldline parameter σ. Such a relation is implicitly provided by the differential
spacetime interval

(
dτ

dσ

)2

=
1
c2

(
ds
dσ

)2

=
1
c2

((
d(x0)

dσ

)2

−
(

d(x1)

dσ

)2)

=
1
c2

(
a−2 cosh2 σ− a−2 sinh2 σ

)
=

1
a2c2 .

Taking roots we have
dτ

dσ
= ± 1

ac
, (6)

We take the positive root, so that the worldline is traversed in a strictly increasing fashion, and
then integrate once

τ =
1
ac

σ + τs. (7)

We are free to let τs = 0, effectively starting our proper time at t = 0.
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xi(τ) = (a−1 sinh(acτ), a−1 cosh(acτ), 0, 0) (8)

As noted already this is a hyperbola (or degenerate hyperboloid) in spacetime, with asymptote
1 (ie: approaching the speed of light).

2.2.5 Proper velocity.

The next computational task is now simple.

ui =
dxi

dτ
= c(cosh(acτ), sinh(acτ), 0, 0) (9)

Is this light like or time like? We can answer this by considering the four vector square

u · u (10)

2.2.6 Time like vectors.

What is a light like or a time like vector?
Recall that we have defined lightlike, spacelike, and timelike intervals. A lightlike interval

between two world points had (ct − ct̃)2 − (x − x̃)2 = 0, whereas a timelike interval had (ct −
ct̃)2 − (x− x̃)2 > 0. Taking the vector (ct̃, x̃) as the origin, the distance to any single four vector
from the origin is then just that vector’s square, so it logically makes sense to call a vector light
like if it has a zero square, and time like if it has a positive square.

Consider the very simplest example of a time like trajectory, that of a particle at rest at a fixed
position x0. Such a particle’s worldline is

X = (ct, x0) (11)

While we interpret t here as time, it functions as a parametrization of the curve, just as σ
does in this question. If we want to compute the proper time interval between two points on this
worldline we have

τb − τ0 =
1
c

∫ tb

λ=ta

√
dX(λ)

dλ
· dX(λ)

dλ
dλ

=
1
c

∫ tb

λ=ta

√
(c, 0)2dλ

=
1
c

∫ tb

λ=ta

cdλ

= tb − ta

The conclusion (arrived at the hard way, but methodologically) is that proper time on this
worldline is just the parameter t itself.

Now examine the proper velocity for this trajectory. This is

u =
dX(τ)

dτ
= (c, 0, 0, 0) (12)
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We can compute the dot product u · u = c2 > 0 easily enough, and in this case for the particle
at rest (but moving in time) we see that this four-vector velocity does have a time like separation
from the origin, and it therefore makes sense to label the four-velocity vector itself as time like.

Now, let’s return to our non-inertial system. Is our four velocity vector time like? Let’s com-
pute it’s square to check

u · u = c2(cosh2− sinh2) = c2 > 0 (13)

Yes, it is timelike.

2.2.7 Spatial velocity.

Now, let’s calculate our spatial velocity

vα =
dxα

dt
=

dxα

dτ

dτ

dt
(14)

Since ct = sinh(acτ)/a we have

c =
1
a

ac cosh(acτ)
dτ

dt
, (15)

or
dτ

dt
=

1
cosh(acτ)

(16)

Similarly from 8, we have

dx1

dτ
= c sinh(acτ) (17)

So our spatial velocity is sinh / cosh = tanh, and we have

vα = (c tanh(acτ), 0, 0) (18)

Note how tricky this index notation is. Four our four vector velocity we use ui = dxi/dτ,
whereas our spatial velocity is distinguished by a change of letter as well as the indexes, so when
we write vα we are taking our derivatives with respect to time and not proper time (i.e. vα =
dxα/dt).

2.2.8 Four-acceleration

From 9, we have

wi(τ) =
dui

dτ
= ac2xi(τ)

Observe that our four-velocity square is

w · w = a2c2a−1(−1) (19)

What does this really signify? Think on this. A check to verify that things are okay is to see if
this four-acceleration is orthogonal to our four-velocity as expected
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w · u = ac2(a−1 sinh(acτ), a−1 cosh(acτ), 0, 0) · c(cosh(acτ), sinh(acτ), 0, 0)

= c3(sinh(acτ) cosh(acτ)− cosh(acτ) sinh(acτ))

= 0

2.2.9 Spatial acceleration

A last beastie that we can compute is the spatial acceleration.

aα =
duα

dt

=
dvα

dτ

dτ

dt

=
ac2

cosh2(acτ)

1
cosh(acτ)

=
ac2

cosh3(acτ)

2.2.10 Summary

Collecting all results we have

xi(τ) =
(

a−1 sinh(acτ), a−1 cosh(acτ), 0, 0
)

(20)

ui(τ) = c (cosh(acτ), sinh(acτ), 0, 0) (21)
vα(τ) = (c tanh(acτ), 0, 0) (22)

wi(τ) = ac2xi(τ) (23)

aα(τ) =

(
ac2

cosh3(acτ)
, 0, 0

)
. (24)

3. Problem 2. Local observers.

3.1. Basis construction.

Observations are made of either the three-vector, or the time like components of four-vectors,
since these are the quantities that we can measure from our local observer frame. This is something
that can be viewed in an approximate sense as being inertial, provided that we ignore the earth’s
rotation, the rotation around the solar system, the rotation of the solar system in the galaxy, the
rotation of the galaxy in the local cluster, and so forth. Provided none of these are changing too
fast relative to our measurements, we can make the inertial approximation.

Example. If we want to measure energy, it is the timelike component of the momentum.

E = cp0 (25)
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PICTURE: Let’s imagine a moving worldline in three dimensions. We can setup a frame and
associated basis along the worldline of the particle, as well as a frame and basis for the stationary
observer.

In class Simon used notation like {ei
ô}, and {ei

â}, but also used ei
0̂
, ei

1̂
, ei

2̂
, ei

3̂
. It was fairly clear

by the context what was meant, but lets avoid any more than one index at a time, and write { f i}
for the frame moving along the worldline, and {ei} for the stationary frame.

3.1.1 Constructing a basis along the worldline.

For any timelike four-vector worldline we have a four-vector velocity of magnitude c, so we
are free to define a timelike basis vector for our moving frame as

f 0 = u/c (26)

going back to the first problem for ui we have

f 0 = (cosh(act), sinh(act), 0, 0) (27)

We are free to pick spatial unit vectors perpendicular to this, so for the y and z components it
is natural to use

f 2 = (0, 0, 1, 0) (28)

f 3 = (0, 0, 0, 1) (29)

We need one more, that’s perpendicular to each of the above. By inspection one can pick

f 1 = (sinh(act), cosh(act), 0, 0) (30)

Did Simon use any other principle to define this last beastie? I missed it if he did. I see that
this happens to be the unit vector proportional to xi.

3.1.2 Consider the stationary observer.

For a stationary observer, our worldline and four velocity respectively, for some constant x0 is

X = (ct, x0) (31)
dX
dτ

= c(1, 0) (32)

Our time like unit vector is very simple

e0 =
1
c

dX
dτ

= (1, 0) (33)

For the spatial unit vectors we have many choices. One would be aligned from the origin to
the position vector

e1 =

(
0,

x
|x|

)
, (34)
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with e2 and e3 oriented in any pair of mutually perpendicular spatial directions. Another
option would be simply pick a eα for each of the normal Euclidean basis directions

e1 = (0, 1, 0, 0) (35)

e2 = (0, 0, 1, 0) (36)

e3 = (0, 0, 0, 1) (37)

Observe, that we have (no sum) eα · eα = −1 (and e0 · e0 = 1).

3.1.3 Consider an inertial observer.

Now consider a slightly more complex case, where an observer is moving with some constant
velocity V = cβ. Our worldline is

X = (ct, x0 + βct). (38)

Let’s calculate the four velocity. We have

dX
dt

= c(1, β). (39)

From this our proper time is

τ =
1
c

∫ t

0
c
√
(1, β)2dt =

√
1− β2t. (40)

Our worldline and four-velocity, parametrized in terms of proper time, with γ = (1− β2)−1/2,
are then

X = (γcτ, x0 + γβcτ) (41)
u = γc(1, β) (42)

For this system, let’s label the basis {hk}. From above our time like unit vector is

h0 = γ(1, β) (43)

We observe that this has the desired time like property, (h0)2 = 1 > 0.
Now, let’s try Gram-Schmidt, subtracting the projection of h0 on e1 from e1 and see what we

get. Our projection is

Projh0(e1) =
e1 · h0

h0 · h0 h0

= (0, 1, 0, 0) · γ(1, β)γ(1, β)

= −γ2βx(1, β).

We should have a space like vector normal to h0 once we take the Gram-Schmidt difference
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e1 − e1 · h0

h0 · h0 h0 = (0, 1, 0, 0) + γ2βx(1, β) (44)

Let’s compute the norm of this vector and verify that it is space like. We should also verify that
it is normal to h0 as expected. For the norm we have

−1 + β2
x + 2βxγ2(0, 1, 0, 0) · (1, β) = −1 + β2

x + 2βxγ2(−βx)

= β2
x(1− 2γ2)− 1

= β2
x

1− β2 − 2
1− β2 − 1

= −β2
x

1 + β2

1− β2 − 1

This is less than zero as we expect for a spacelike vector. Good. Our second spacelike unit
vector is thus

h1 =

(
β2

x
1 + β2

1− β2 + 1

)−1/2 (
(0, 1, 0, 0) + γ2βx(1, β)

)
(45)

Let’s verify that these two computed spacetime basis vectors are normal. Their dot product is
proportional to

((0, 1, 0, 0) + γ2βx(1, β)) · (1, β) = −βx + γ2βx(1− β2)

= −βx + βx

= 0 �

We could continue this, continuing the Gram-Schmidt iteration using e2 and e3 for the remain-
der of the initial spanning set.

Doing so, we’d have

h2 ∝ e2 − e2 · h1

h1 · h1 h1 − e2 · h0

h0 · h0 h0. (46)

After scaling so that h2 · h2 = −1, we’d then have

h3 ∝ e3 − e3 · h2

h2 · h2 h2 − e3 · h1

h1 · h1 h1 − e3 · h0

h0 · h0 h0. (47)

3.1.4 Projections and the reciprocal basis.

Recall that for Euclidean space, when we had orthonormal vectors, we could simplify the
Gram-Schmidt procedure from

ek+1 ∝ f k+1 −
k

∑
i=0

f k+1 · ei

ei · ei ei, (48)
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to

ek+1 ∝ f k+1 −
k

∑
i=0

(
f k+1 · ei

)
ei. (49)

However, for our non-Euclidean space, we cannot do this. This suggests a nice intuitive mo-
tivation for the reciprocal basis. We can define, for any normalized basis { f i} in our Minkowski
space (no sum)

ei =
ei

ei · ei (50)

Now our Gram-Schmidt iteration becomes

ek+1 ∝ f k+1 −
k

∑
i=0

(
f k+1 · ei

)
ei, (51)

and we identify, for a four vector b, the projection onto the chosen basis vector, as (no sum)

Projei(b) = (b · ei)ei. (52)

In particular, we have for the resolution of identity (now with summation implied again)

b = (b · ei)ei. (53)

This is nice and it allows us to work with four vectors in their entirety, instead of in coordinates.
We have

x = xiei = xiei, (54)

where

xi = x · ei (55)
xi = x · ei (56)

Also note that eα = −eα and e0 = e0, just as the coordinates themselves vary sign with index
raising and lowering dependent on whether they are time like or space like.

We’ve seen that the representation of the basis can be chosen to depend on the observer, and
for the stationary observer, we had simply

e0 = (1, 0, 0, 0) (57)

e1 = (0, 1, 0, 0) (58)

e2 = (0, 0, 1, 0) (59)

e3 = (0, 0, 0, 1), (60)

with a reciprocal basis ei · ej = δi
j
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e0 = (1, 0, 0, 0) (61)
e1 = −(0, 1, 0, 0) (62)
e2 = −(0, 0, 1, 0) (63)
e3 = −(0, 0, 0, 1). (64)

3.1.5 An alternate basis for the inertial frame.

Given the same h0 as defined above for the inertial frame, let’s define an alternate h1, subtract-
ing the timelike component from the worldline of the particle itself. Let

X = (γcτ, x0 + γβcτ)

h0 = γ(1, β)

Y = X− (X · h0)h0

The dot product above is

X · h0 = (γcτ, x0 + γβcτ) · γ(1, β)

= γ2cτ − γ(β · x0)− γ2β2cτ

= γ2cτ(1− β2)− γ(β · x0)

= cτ − γ(β · x0)

Our rejection of h0 from X is then

Y = (γcτ, x0 + γβcτ)− (cτ − γ(β · x0))γ(1, β)

= (γ2(β · x0), x0 + γβcτ − cτγβ + γ2(β · x0)β)

= (γ2(β · x0), x0 + γ2(β · x0)β)

= γ2(β · x0)(1, β) + (0, x0)

We can verify that this is spacelike by computing the square

Y2 = γ2(β · x0)
2 − x2

0 + 2γ2(β · x0)(1, β) · (0, x0)

= γ2(β · x0)
2 − x2

0 − 2γ2(β · x0)
2

= −γ2(β · x0)
2 − x2

0

< 0.

A final normalization of this yields

h1 = (γ1(β · x0)
2 + x2

0)
−1/2 (γ2(β · x0)(1, β) + (0, x0)

)
(65)

It’s easy enough to verify that we have h1 · h0 as desired.
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3.1.6 A followup note on the worldline basis.

Note that we can construct the spatial vector f 1 in 30 systematically without use of any sort of
intuition. We get this by Gram-Schmidt directly

f 1 ∝ e1 − (e1 · e0)e0 − (e1 · e2︸ ︷︷ ︸
=0

)e2 − (e1 · e3︸ ︷︷ ︸
=0

)e3

= (0, 1, 0, 0)− (0, 1, 0, 0) · (cosh(acτ), sinh(acτ), 0, 0)e0

= (0, 1, 0, 0) + sinh(acτ)(cosh(acτ), sinh(acτ), 0, 0)

= (sinh(acτ) cosh(acτ), 1 + sinh2(acτ), 0, 0)

= (sinh(acτ) cosh(acτ), cosh2(acτ), 0, 0)
∝ (sinh(acτ), cosh(acτ), 0, 0) �

It’s also noteworthy to observe that we have f i · f j = 0, i 6= j, and f 0 · f 0 = 1 and f α · f α = −1,
as desired.

3.1.7 Relating the Lorentz transformation and coordinate transformations.

We are familiar now with the tensor form of the Lorentz transformation. This takes coordinates
to coordinates

x′i = Lj
ixj (66)

Specifying just the coordinates and not the basis associated with the coordinates leaves out
some valuable seeming information. For instance, is the basis associated with the pre and post
transformed coordinates the same?

For example, suppose that our basis for the primed coordinates is { fi}, construction of the four
vector (in its entirety) out of its coordinates and this basis requires the sum

X = x′i fi

= (Lj
i fi)xj

This interior sum Lj
i fi is a linear combination of the primed basis vectors, but we see that these

are in fact a set of vectors, and can be considered the basis for the unprimed coordinates. We could
for example write

ei = Lj
i fi. (67)

With such a description, our Lorentz transformation becomes just a mechanism to map vectors
in one basis into another. To make this clear, let’s work in the opposite order, and suppose that we
have a pair of bases {ei} and { fi}. For any vector X we can calculate the coordinates utilizing the
reciprocal frame.

X = (X · ei)ei = (X · f j) f j. (68)

Writing
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xi = X · ei (69)

x′i = X · f i. (70)

This is
x′k fk = xjej. (71)

Dotting with f i we have

x′i = xj(ej · f i). (72)

In this form we see explicitly that the Lorentz transformation is in fact the “direction cosines”
associated with a change of basis. Specifically, we can write

Lj
i = ej · f i (73)

I like this as a way to view the Lorentz transformation, since the explicit inclusion of the basis
sets involved makes the geometry clear.

3.1.8 A coordinate calculation example.

I have gone to the effort of calculating some basis representations in a lot more detail than we
covered in the tutorial, and explore some of the ideas further. This seemed important to get a feel
for what we were discussing, and to see how the pieces fit together.

Let’s do one more simple example, where we look at the coordinates of a four vector in the
coordinate system where the time like direction is the proper velocity, and also eliminate the the y
and z coordinates from the mix to simplify it further. For such a system we have only two choices
for our spatial basis vector (we can alter the sign).

For our spacetime point, consider the worldline for a particle moving at a constant velocity.
That is

X = (ct, p0 + βct). (74)

As before our proper time is

τ =
√

1− β2t, (75)

allowing us to re-parametrize the worldline, and have a proper time parametrized velocity

X = (γcτ, p0 + βγcτ) (76)
u = γ(1, β) (77)

Let’s utilize the standard basis for the stationary frame, and denote this {ei}

e0 = (1, 0) (78)

e1 = (0, 1) (79)
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and calculate a basis { f i} for which f 0 = u is the time like direction. By Gram-Schmidt, our
space like basis vector is

f 1 ∝ e1 − (e1 · f 0) f0

= (0, 1)− (0, 1) · γ(1, β)γ(1, β)

= (0, 1)− γ2(−β)(1, β)

= (γ2β, 1 + β2γ2)

=

(
γ2β,

1
1− β2 (1− β2 + β2

)
=
(
γ2β, γ2)

∝ −γ(β, 1)

The negative sign here is a bit of sneaky move and chosen only after calculating the coordinates
of the vector in this frame, so that at speed β = 0, the coordinates in frames {ei} and { f i} are the
same. Our basis is then

f 0 = γ(1, β) (80)

f 1 = −γ(β, 1) (81)

One can quickly verify that f 0 · f 0 = 1, f 1 · f 1 = −1, and f 0 · f 1 = 0. Our reciprocal frame,
defined so that f i · f j = δi

j is

f0 = γ(1, β) (82)
f1 = γ(β, 1) (83)

With this basis our coordinate representation is

X = (X · f 0)︸ ︷︷ ︸
x0

f0 + (X · f 1)︸ ︷︷ ︸
x1

f1, (84)

and we calculate our coordinates to be

x0 = cτ − γp0β (85)

x1 = γp0 (86)

As a check one can verify that X = x0 f0 + x1 f1 as expected. So we see that in a frame for which
the proper velocity is the time like basis vector, our particle is at rest (moving only in time).

Some interesting information can be extracted after making the coordinate calculation. It is
interesting to note that the position x1 = γp0 equals p0 when β = 0. When the particle is observed
at rest in one frame, it remains at rest in the frame for which its proper velocity is the time like
direction (the particle’s rest frame). Furthermore, when the particle is observed moving, the po-
sition in the particles rest frame is always greater than the observed position x0γ ≥ x0. In other
words, the particle’s position appears closer to the origin in the observer’s frame than it is in the
rest frame (it’s position is contracted).

14



Also see that the rest frame time matches the observer frame time when the particle is observed
at rest (β = 0). The time in the rest frame is always less than the time in the observer frame and by
increasing beta we can shift the initial time position of the particle in its rest frame as far backwards
as we like. Similarly, if the particle is observed moving backwards in the observer frame, the initial
time position of the particle in the rest frame can be pushed as far forward in time as we like.

3.1.9 An initially confusing aspect of the given non-inertial worldline.

For the worldline

X =
1
a
(sinh(acτ), cosh(acτ)), (87)

we calculated

u = c(cosh(acτ), sinh(acτ)) (88)

f 0 = u/c = (cosh(acτ), sinh(acτ)) (89)

f 1 = (sinh(acτ), cosh(acτ)). (90)

The curious thing about this basis is that when one calculates the rest frame coordinates

x0 = X · f 0 = 0 (91)

x1 = X · f 1 = −1
a

, (92)

the timelike coordinate is zero uniformly? We can verify easily that the position four vector is
recovered as expected from X = x0 f0 + x1 f1, but it still seems irregular that we have no timelike
coordinate?

Oh! I see. This is a spacelike four vector. Look at the length

X2 =
1
a2 (sinh2(acτ)− cosh2(acτ)) = − 1

a2 < 0. (93)

Because it is spacelike in one frame, it can only be (just) spacelike in its rest frame.
By calculating this coordinate, we also see that a choice of

f 1 = −(sinh(acτ), cosh(acτ)), (94)

would have been a better one. Then our particle’s coordinate in the rest frame would be 1/a
at t = 0. With the initial choice of the basis vector f 1, it’s coordinate ends up being the inverse of
its position at t = 0.

3.2. Split of energy and momentum (VERY ROUGH NOTES).

Disclaimer. At the very end of the tutorial Simon jotted some very quick notes, and I’ve included
what I got of those without editing below. I have yet to go through these and make something
coherent of them.

In a coordinate representation, the timelike component of our momentum was obtained by
extracting the first coordinate
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p0 = (p0, p1, p2, p3) · (1, 0, 0, 0). (95)

This was (after scaling) was our energy term E = cp0, and we can extract this in the observer
frame by dotting with our observer frame timelike basis vector e0

Eobserver = cp · e0 ≡ cp0 (96)

In the observers reference frame, where ui = c(1, 0, 0, 0), and pi = mui, we have

pi = (mc, 0, 0, 0) (97)

u′iobserved = cγ((1, v/c, 0, 0) (98)

ui
observerc(1, 0, 0, 0) (99)

u′iobserver =


γ γv/c 0 0

γv/c γ 0 0
0 0 0 0
0 0 0 0

 (100)

p0 = γmc (101)

3.3. Frequency of light from a distant star (AGAIN VERY ROUGH NOTES).

Suppose we have a star far away. What is the frequency of the light emitted

ω̂ = ωe−acτ (102)

FIXME: derive.
where ω is the emitted frequency.
FIXME: This implied an elapsed time before the star would no longer be visible?

16


