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1. Motivation.

Long solenoid of radius R, n turns per unit length, current I. Coaxial with with solenoid are
two long cylindrical shells of length l and (radius, charge) of (a, Q), and (b,−Q) respectively,
where a < b.

When current is gradually reduced what happens?

1.1. The initial fields.

1.1.1 Initial Magnetic field.

For the initial static conditions where we have only a (constant) magnetic field, the Maxwell-
Ampere equation takes the form

∇× B =
4π

c
j (1)

On the name of this equation . In notes from one of the lectures I had this called Maxwell-
Faraday equation, despite the fact that this isn’t the one that Maxwell made his displacement
current addition. Did the Professor call it that, or was this my addition? In [2] Faraday’s law
is also called the Maxwell-Faraday equation. [1] calls this the Ampere-Maxwell equation, which
makes more sense.

Put into integral form by integrating over an open surface we have
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∫
A
(∇× B) · da =

4π

c

∫
A

j · da (2)

The current density passing through the surface is defined as the enclosed current, circulating
around the bounding loop

Ienc =
∫

A
j · da, (3)

so by Stokes Theorem we write ∫
∂A

B · dl =
4π

c
Ienc (4)

Now consider separately the regions inside and outside the cylinder. Inside we have∫
∂A

B · dl =
4π I

c
= 0, (5)

Outside of the cylinder we have the equivalent of n loops, each with current I, so we have∫
B · dl =

4πnIL
c

= BL. (6)

Our magnetic field is constant while I is constant, and in vector form this is

B =
4πnI

c
ẑ (7)

1.1.2 Initial Electric field.

How about the electric fields?
For r < a, and r > b we have E = 0 since there is no charge enclosed by any Gaussian surface

that we choose.
Between a and b we have, for a Gaussian surface of height l (assuming that l � a)

E(2πr)l = 4π(+Q), (8)

so we have

E =
2Q
rl

r̂. (9)

1.1.3 Poynting vector before the current changes.

Our Poynting vector, the energy flux per unit time, is

S =
c

4π
(E× B) (10)

This is non-zero only in the region both between the solenoid and the enclosing cylinder (ra-
dius b) since that’s the only place where both E and B are non-zero. That is
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S =
c

4π
(E× B)

=
c

4π

2Q
rl

4πnI
c

r̂× ẑ

= −2QnI
rl

φ̂

(since r̂× φ̂ = ẑ, so ẑ× r̂ = φ̂ after cyclic permutation)

1.1.4 A motivational aside: Momentum density.

Suppose |E| = |B|, then our Poynting vector is

S =
c

4π
E× B =

ck̂
4π

E2, (11)

but

E = energy density =
E2 + B2

8π
=

E2

4π
, (12)

so

S = ck̂E = vE . (13)

Now recall the between (relativistic) mechanical momentum p = γmv and energy E = γmc2

p =
v
c2 E . (14)

This justifies calling the quantity

PEM =
S
c2 , (15)

the momentum density.

1.1.5 Momentum density of the EM fields.

So we label our scaled Poynting vector the momentum density for the field

PEM = −2QnI
c2rl

φ̂, (16)

and can now compute an angular momentum density in the field between the solenoid and
the outer cylinder prior to changing the currents

LEM = r× PEM

= rr̂× PEM
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This gives us

LEM = −2QnI
c2l

ẑ = constant. (17)

Note that this is the angular momentum density in the region between the solenoid and the
inner cylinder, between z = 0 and z = l. Outside of this region, the angular momentum density is
zero.

1.2. After the current is changed

1.2.1 Induced electric field

When we turn off (or change) I, some of the magnetic field B will be converted into electric
field E according to Faraday’s law

∇× E = −1
c

∂B
∂t

. (18)

In integral form, utilizing an open surface, this is

∫
A
(∇× l) · n̂dA =

∫
∂A

E · dl

= −1
c

∫
A

∂B
∂t
· dA

= −1
c

∂ΦB(t)
∂t

,

where we introduce the magnetic flux

ΦB(t) =
∫

A
B · dA. (19)

We can utilizing a circular surface cutting directly across the cylinder perpendicular to ẑ of
radius r. Recall that we have the magnetic field 7 only inside the solenoid. So for r < R this flux is

ΦB(t) =
∫

A
B · dA

= (πr2)
4πnI(t)

c
.

For r > R only the portion of the surface with radius r ≤ R contributes to the flux

ΦB(t) =
∫

A
B · dA

= (πR2)
4πnI(t)

c
.

We can now compute the circulation of the electric field∫
∂A

E · dl = −1
c

∂ΦB(t)
∂t

, (20)
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by taking the derivatives of the magnetic flux. For r > R this is

∫
∂A

E · dl = (2πr)E

= −(πR2)
4πnİ(t)

c2 .

This gives us the magnitude of the induced electric field

E = −(πR2)
4πnİ(t)

2πrc2

= −2πR2nİ(t)
rc2 .

Similarly for r < R we have

E = −2πrnİ(t)
c2 (21)

Summarizing we have

E =

{
− 2πrnİ(t)

c2 φ̂ For r < R
− 2πR2nİ(t)

rc2 φ̂ For r > R
(22)

1.2.2 Torque and angular momentum induced by the fields.

Our torque N = r× F = dL/dt on the outer cylinder (radius b) that is induced by changing
the current is

Nb = (br̂)× (−QEr=b)

= bQ
2πR2nİ(t)

bc2 r̂× φ̂

=
1
c2 2πR2nQİẑ.

This provides the induced angular momentum on the outer cylinder

Lb =
∫

dtNb =
2πnR2Q

c2

∫ 0

I

dI
dt

dt

= −2πnR2Q
c2 I.

This is the angular momentum of b induced by changing the current or changing the magnetic
field.

On the inner cylinder we have
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Na = (ar̂)× (QEr=a)

= aQ
(
−2π

c
naİ
)

r̂× φ̂

= −2πna2Qİ
c2 ẑ.

So our induced angular momentum on the inner cylinder is

La =
2πna2QI

c2 ẑ. (23)

The total angular momentum in the system has to be conserved, and we must have

La + Lb = −
2nIQ

c2 π(R2 − a2)ẑ. (24)

At the end of the tutorial, this sum was equated with the field angular momentum density
LEM, but this has different dimensions. In fact, observe that the volume in which this angular
momentum density is non-zero is the difference between the volume of the solenoid and the inner
cylinder

V = πR2l − πa2l, (25)

so if we are to integrate the angular momentum density 17 over this region we have∫
LEMdV = −2QnI

c2 π(R2 − a2)ẑ (26)

which does match with the sum of the mechanical angular momentum densities 24 as ex-
pected.
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