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Evaluating the squared sinc integral

1.1 Motivation

In the Fermi’s golden rule lecture we used the result for the integral of the squared sinc function.
Here is a reminder of the contours required to perform this integral.

1.2 Guts

We want to evaluate
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Now we pick a contour that is distorted to one side of the origin as in fig. 1.1
We employ Jordan’s theorem (§8.12 [1]) now to pick the contours for each of the integrals since we
need to ensure the e*? terms converges as R — oo for the z = Re' part of the contour. We can write
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The second two integrals both surround no poles, so we have only the first to deal with
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Figure 1.1: Contour distorted to one side of the double pole at the origin

Putting everything back together we have
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1.2.1  On the cavalier choice of contours

The choice of which contours to pick above may seem pretty arbitrary, but they are for good reason.
Suppose you picked Cy + C; for the first integral. On the big C; arc, then with a z = Re' substitution

we have
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This clearly doesn’t have the zero convergence property that we desire. We need to pick the C;
contour for the first (positive exponent) integral since in that [77/2,377/2] range, cos 6 is always neg-
ative. We can however, use the C; contour for the second (negative exponent) integral. Explicitly,
again by example, using C, contour for the first integral, over that portion of the arc we have
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