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1. Reading

§1.4 from [1]. FIXME: Probably more elsewhere too.

2. Disclaimer.

Peeter’s lecture notes from class. May not be entirely coherent.

3. Review: Relative motion near a point in a fluid

Referring to figure (1)
we write

dx′ = dx + duδt (1)

or in coordinate form
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Figure 1: velocity displacements at a fluid point.

dxi = dxi + duiδt

= dxi +
∂ui

∂xj
dxjδt

(2)

We can now split the components of the gradient of ui into symmetric and antisymmetric parts
in the normal way

∂ui

∂xj
=

1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
+

1
2

(
∂ui

∂xj
−

∂uj

∂xi

)
≡ eij + ωij.

(3)

3.1. The antisymmetric term (name?)

With

ω = ∇× u, (4)

we introduce the dual vector

Ω = Ωkek =
1
2

ω (5)

defined according to

Ω1 =
1
2

ω32 =
1
2

ω1 (6)

Ω2 =
1
2

ω13 =
1
2

ω2 (7)

Ω3 =
1
2

ω21 =
1
2

ω3 (8)

With
ωij = εijk∂iuj (9)

we can write
Ωk = −

1
2

εijk∂iuj. (10)
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In matrix form this becomes

ωij =

 0 −Ω3 Ω2
Ω3 0 −Ω1
−Ω2 Ω1 0

 . (11)

For the special case eij = 0, our displacement equation in vector form becomes

dx′ = dx + Ω× dxδt. (12)

Let’s do a quick verification that this is all kosher.

(Ω× dx)i = Ωrdxsεrsi

=

(
−1

2
εabr∂aub

)
dxsεrsi

= −1
2

∂aubdxsδ
[ab]
si

= −1
2
(∂sui − ∂ius)dxs

=
1
2

(
∂us

∂xi
− ∂ui

∂xs

)
dxs

=
1
2

(
∂uj

∂xi
− ∂ui

∂xj

)
dxj

= ωijdxj.

All’s good in the world of signs and indexes.

3.2. The symmetric term (strain tensor).

Now let’s look at the symmetric term. With the initial volume

dV = dx1dx2dx3, (13)

and the final volume written assuming that we are working in our principle strain basis, we
have (very much like the solids case)

dV ′ = dx′1dx′2dx′3
= (1 + e11δt)dx1 + (1 + e22δt)dx2 + (1 + e33δt)dx3

= (1 + (e11 + e22 + e33)δt)dx1dx2dx3 + O((δt)2)

=

(
1 +

(
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3

)
δt
)

dV

= (1 + (∇ · u)δt) dV

So much like we expressed the relative change of volume in solids, we now can express the
relative change of volume per unit time as
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dV ′ − dV
dVδt

= ∇ · u, (14)

or

δ(dV)

dVδt
= ∇ · u, (15)

We identify the divergence of the displacement as the relative change in volume per unit time.

4. Newtonian Fluids.

Definition 4.1 (Newtonian Fluids) A fluid for which the rate of strain tensor is linearly related to stress
tensor.

For such a fluid, the constitutive relation takes the form

σij = −pδij + 2µeij, (16)

where p is called the isotropic pressure, and µ is the viscosity of the fluid.
For comparison, in solids we had

σij = λekkδij + 2µeij (17)

While we are allowing for rotation in the fluids (ωij) that we did not consider for solids, we
now impose a requirement that the strain tensor trace is not a function of the fluid displacements,
with

λekk = λ∇ · u = −p. (18)

What is the physical justification for this? In words this was explained after class as the effect of
rotation invariance with an attempt to measure the pressure at a given point in the fluid. It doesn’t
matter what direction we place our pressure measurement device at a given fixed location in the
fluid. Note that this doesn’t mean the pressure itself is constant. For example with a gravitational
body force applied, our pressure will increase with depth in the fluid. Noting this provides a nice
physical interpretation of the trace of the strain tensor.

Can we mathematically justify this explanation? We see above that we have

∇ · u =
δ ln(dV)

δt
, (19)

so we are in effect making the identification

ln dV = −pt/λ + ln dV0 (20)

or

dV = dV0e−pt/λ. (21)

The relative change in a differential volume element changes exponentially.
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4.1. Dimensions

[µ] =
M
LT

. (22)

Some examples

• µair = 1.8× 10−5 kg
m s

• µwater = 1.1× 10−3 kg
m s

• µglycerin = 2.3 kg
m s

5. Conservation of mass in fluid.

Referring to figure (2)

Figure 2: FIXME: continuumL9fig2

we have a flow rate

ρuδtds (23)

or
ρuds, (24)

per unit time. Here the velocity of fluid particle is u.∮
ρu · ds, (25)

we must have

∂

∂t

∫
ρdV = −

∮
ρu · ds. (26)

dm = ρdV (27)

dm
dt

=
d
dt
(ρdV) (28)
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• positive if fluid is coming in.

• negative if fluid is going out.

By Green’s theorem ∮
A · ds =

∫
V
(∇ · u)dV, (29)

so we have

−
∮

ρu · ds = −
∫

∇ · (ρu)dV, (30)

and must have ∫ (
∂ρ

∂t
+∇ · (ρu)

)
dV = 0. (31)

The total mass has to be conserved. The mass that is leaving the volume per unit time must
move through the surface of the volume in that time. In differential form this is

∂ρ

∂t
+∇ · (ρu) = 0. (32)

Operating by chain rule we can write this as

∂ρ

∂t
+ u ·∇ρ = −ρ∇ · u. (33)

To make sense of this, observe that we have for f = f (x, y, z, t)

δ f = lim
δt→0

δ f
δt

dt

=
∂ f
∂x

δx
δt

+
∂ f
∂y

δy
δt

+
∂ f
∂z

δz
δt

+
∂ f
∂t

= (∇ f ) · u +
∂ f
∂t

so we have

∂ρ

∂t
+ u ·∇ρ =

dρ

dt
(34)

or
dρ

dt
= −ρ∇ · u. (35)
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5.1. Incompressible fluid

When the density doesn’t change note that we have

dρ

dt
= 0 (36)

which then implies

∇ · u = 0, (37)

at all points in the fluid.
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