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1.1 Disclaimer

Peeter’s lecture notes from class. May not be entirely coherent.

1.2 Interacting spin

For these notes

h̄ = kB = 1

This lecture requires concepts from phy456 [1].
We’ll look at pairs of spins as a toy model of interacting spins as depicted in fig. 1.1.

Figure 1.1: Pairs of interacting spins

Example: Simple atomic system, with the nucleus and the electron can interact with each other
(hyper-fine interaction).
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Consider two interacting spin 1/2 operators S each with components Ŝx, Ŝy, Ŝz

H = JS1 · S2 − B(Ŝz
1 + Ŝz

2) (1.1)

Ŝz
1 + Ŝz

2 ∝ magnetization along ẑ (1.2)

We rewrite the dot product term of the Hamiltonian in terms of just the squares of the spin opera-
tors

H = J
(S1 + S2)2 − S2

1 − S2
2

2
− B(Ŝz

1 + Ŝz
2) (1.3)

The squares S2
1, S2

2, (S1 + S2)2 can be thought of as “length”s of the respective angular momentum
vectors.

We write

S = S1 + S2, (1.4)

for the total angular momentum. We recall that we have

Ŝz
2 = Ŝz

1 = S(S + 1), (1.5)

where S = 1/2, and S = S1 + S2 implies that Stotal ∈ {0, 2}.

Stotal = 0 (singlet)

Stotal = 1. Triplet: (−1, 0, +1)

Stotal = 0 state For m = 0
1√
2
(↑↓ − ↓↑) (1.6)

energies

J
−3/4− 3/4

2
= −3

4
J (1.7)

For m = 1
1√
2
(↑↑) (1.8)

energies

J
(

1− 3
4

)
− B→ J

4
− B (1.9)
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Stotal = 1 state For m = 0
1√
2
(↑↓ + ↓↑) (1.10)

energies

J
4

(1.11)

For m = 1
1√
2
(↓↓) (1.12)

energies

J
4

+ B. (1.13)

These are illustrated schematically in fig. 1.2.

Figure 1.2: Energy levels for two interacting spins as a function of magnetic field

Our single pair partition function is

Z1 = e+β3J/4 + e−β(J/4−B)e−β3J/4 + e−β(J/4+B) (1.14)

So for N pairs our partition function is

Z = ZN
1 =

(
e+β3J/4 + e−β(J/4−B)e−β3J/4 + e−β(J/4+B)

)N
. (1.15)

Our free energy

F = −T ln Z = −TN ln Z1. (1.16)
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− ∂F
∂β

= TN
∂

∂β
ln Z1. (1.17)

Our magnetization µ is

µ =
TN
Z1

(
βe−β(J/4−B) − βe−β(J/4+B)

)
(1.18)

The moment per particle, after Tβ cancellation, is

(1.19)

m =
µ

N

=
1

Z1

(
e−β(J/4−B) − e−β(J/4+B)

)
= 2

e−βJ/4

Z1
sinh

(
B
T

)
.

Low temperatures, small B (T � J, B� J) The e3βJ/4 term will dominate.

Z1 ≈ e3Jβ/4 (1.20)

m ≈ 2e−βJ sinh
(

B
T

)
. (1.21)

Figure 1.3: magnetic moment

The specific heat has a similar behavior

CV ∼ e−βJ . (1.22)

Considering a single spin 1/2 system, we have energies as illustrated in fig. 1.4.
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Figure 1.4: Single particle spin energies as a function of magnetic field

At zero temperatures we have a finite non-zero magnetization as illustrated in fig. 1.5, but as we
heat the system up, the state of the system will randomly switch between the 1, and 2 states. The
partition function democratically averages over all such possible states.

Figure 1.5: Single spin magnetization

Once the system heats up, the spins are democratically populated within the entire set of possible
states.

We contrast this to this interacting spins problem which has a magnetization of the form fig. 1.6.
For the single particle specific heat we have specific heat of the form fig. 1.7.
We’ll see the same kind of specific heat distribution with temperature for the interacting spins

problem, but the peak will be found at an energy that’s given by the difference in energies of the two
states as illustrated in fig. 1.8.
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Figure 1.6: Interacting spin magnetization

Figure 1.7: Single particle specific heat
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∆E =
J
4
− −3J

4
= J (1.23)

Figure 1.8: Magnetization for interacting spins
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