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Some problems from Kittel Thermal Physics, chapter II

1.1 Motivation

Some review from the ancient second (or third?) year thermal physics course I took.

1.2 Guts

Exercise 1.1 Energy and temperature ([1] problem 2.1)

Suppose g(U) = CU3N/2, where C is a constant and N is the number of particles. This form of g(U)
actually applies to an ideal gas.

a. Show that U = 3Nt/2
b. Show that (∂2σ/∂U2)N is negative.

Answer for Exercise 1.1

Part a. Temperature We’ve got

(1.1)

1
τ

=
∂σ

∂U

=
∂

∂U

(
ln C +

3N
2

ln U
)

=
3N
2

1
U

,

or

U =
3N
2

τ. (1.2)

Part b. Second derivative of entropy From above

∂2σ

∂U2 = −3N
2

1
U2 . (1.3)

1



This doesn’t seem particularly suprising if we look at the plots. For example for C = 1 and 3N/2 = 1
we have fig. 1.1.
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Figure 1.1: Plots of entropy and its derivatives for this multiplicity function

The rate of change of entropy with energy decreases monotonically and is always positive, but
always has a negative slope.

Exercise 1.2 Paramagnetism ([1] problem 2.2)

Find the equilibrium value at temperrature τ of the fractional magnetization

M
Nm

=
2 〈s〉

N
(1.4)

of the system of N spins each of magnetic moment m in a magnetic field B. The spin excess is 2s.
Take the entropy as the logarithm of the multiplicity g(N, s) as given in (1.35):

σ(s) ≈ ln g(N, 0)− 2s2

N
, (1.5)

for |s| � N. Hint: Show that in this approximation

σ(U) = σ0 −
U2

2m2B2N
, (1.6)

with σ0 = ln g(N, 0). Further, show that 1/τ = −U/(m2B2N), where U denotes 〈U〉, the thermal
average energy.

Answer for Exercise 1.2
I found this problem very hard to interpret. What exactly is being asked for? Equation (1.35) in the

text was

g(N, s) ≈ g(N, 0)e−
2s2
N (1.7a)
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g(N, 0) ≈
√

2
πN

2N , (1.7b)

from which we find the entropy 1.5 directly after taking logarithms. The temperature is found
directly

The magnetization, for a system that has spin excess 2s was defined as

U = −2smB ≡ −MB (1.8)

and we can substitute that for s

σ(U) = σ0 −
U2

2m2B2N
, (1.9)

and take derivatives for the temperature

(1.10)

1
τ

=
∂σ

∂U

=
∂

∂U

(
σ0 −

U2

2m2B2N

)
= − U

m2B2N

This gives us a relation between temperature and the energy of the system with spin excess 2s, and
we could write

M
Nm

= − U
BNm

=
mB
τ

. (1.11)

Is this the relation that this problem was asking for?
Two things I don’t understand from this problem:

1. Where does 2 〈s〉 /N come from? If we calculate the expectatation of the spin excess, we find
that it is zero

(1.12)〈2s〉 =

√
2

πN 2N
∫ ∞
−∞ ds2se−

2s2
N

2N

= 0.

2. If 2 〈s〉 has a non-zero value, then doesn’t that make 〈U〉 also zero? It seems to me that U in
1.10 is the energy of a system with spin excess s, and not any sort of average energy?

Exercise 1.3 Quantum harmonic oscillator ([1] problem 2.3)

a. Entropy. Find the entropy of a set of N oscillators of frequency ω as a function of the total
quantum number n. Use the multiplicity function (1.55) and make the Stirling approximation
ln N!≈ N ln N − N. Replace N − 1 by N.
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b. Planck Energy. Let U denote the total energy nh̄ω of the oscillators. Express the entropy as
σ(U, N). Show that the total energy at temperature τ is

U =
Nh̄ω

exp (h̄ω/τ)− 1
(1.13)

This is the Planck result; it is derived again in Chapter 4 by a powerful method that does not
require us to find the multiplicity function.

Answer for Exercise 1.3

Part a. Entropy The multiplicity was found in the text to be

g(N, n) =
(N + n− 1)!
n! (N − 1)!

(1.14)

I wasn’t actually able to follow the argument in the text, and found the purely combinatoric
wikipedia argument [3] much clearer. A similar diagram and argument can also be found in [2]
§3.8.

Taking logarithms and applying the Stirling approximation, our entropy is

(1.15)

σ = ln g
= ln(N + n − 1)!− ln(N − 1)!− ln n!
≈ (N + n − 1) ln(N + n − 1)− (N + n − 1)− (N − 1) ln(N − 1) + (N − 1)− n ln n + n

= (N − 1) ln
N + n − 1

N − 1
+ n ln

N + n − 1
n

Part b. Planck Energy Now we make the N − 1 → N replacement suggested in the problem (ie.
assuming N � 1), for

(1.16)

σ ≈ N ln
N + n

N
+ n ln

N + n
n

= (N + n) ln(N + n)− N ln N − n ln n

=
(

N +
U

h̄ω

)
ln
(

N +
U

h̄ω

)
− N ln N − U

h̄ω
ln

U
h̄ω

With (x ln x)′ = ln x + 1, we have

(1.17)

1
τ

=
∂σ

∂U

=
1

h̄ω

(
ln
(

N +
U

h̄ω

)
− 1− ln

U
h̄ω

+ 1
)

,

or
Ue

h̄ω
τ = Nh̄ω + U. (1.18)

A final rearrangement gives us the Planck result 1.13.
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