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Midterm II reflection

Exercise 1.1 Magnetic field spin level splitting (2013 midterm II p1)

A particle with spin S has 25 + 1 states —S, —S+1,---S —1,S. When exposed to a magnetic field,
state splitting results in energy E,, = imB. Calculate the partition function, and use this to find the
temperature specific magnetization. A “sum the geometric series” hint was given.

Answer for Exercise 1.1

Our partition function is
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25
Z=a5 Y a"
n=0

1125+1 -1

=0a _—
a—1 (1.3)
S+1 _ afS

a—1
aS+1/2 _ 4=S-1/2

a2 _ 12

a




Substitution of a gives us
7= sinh(1B(S +1/2))

sinh(iBB/2) (1.4)

To calculate the magnetization M, I used

M = — (H) /B. (1.5)

As [1] defines magnetization for a spin system. It was pointed out to me after the test that magne-
tization was defined differently in class as
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These are, up to a sign, identical, at least in this case, since we have § and B traveling together in
the partition function.
In terms of the average energy
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Compare this to the in-class definition of magnetization
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Defining the magnetic moment in either of these fashions is really a cheat, because it’s done without
any connection to physics of the situation. In §3.9 of [2] is a much better seeming approach, where
the moment is defined as M, = — (u - H) /H, but this is then shown to have the form eq. (1.8).



Calculating it For this derivative we have

0 _ 9 sinh@iBB(S +1/2))
5B "7 T aBE) ™ sinh@BB/2)
)
= 5GB) (Insinh@BB(S +1/2)) — Insinh(ifB/2)) (1.9)

= g ((2S +1) coth@iBB(S +1/2)) — coth(iB/2)) .
This gives us
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(2 + 1) coth@BB(S +1/2)) — coth(1BB/2))

After some simplification (done offline in notes /phy452 /mathematica/midtermTwoQ1FinalSimplificationMu.
we get

(s + 1) sinh(iBBs) — s sinh(iBB(s + 1))
cosh(ifB(2s +1)) — 1 '

I got something like this on the midterm, but recall doing it somehow much differently.

u=h

(1.11)

Exercise 1.2 Perturbation of classical harmonic oscillator (2013 midterm II p2)

Consider a single particle perturbation of a classical simple harmonic oscillator Hamiltonian
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H= Emcuz (2 +y2) + o (pi + p;) +ax* + by® (1.12)

Calculate the canonical partition function, mean energy and specific heat of this system.

a. This problem can be attempted in two ways, the first of which was how I did it on the midterm,
differentiating under the integral sign, leaving the integrals in exact form, but not evaluated
explicitly in any way.

b. By Taylor expanding around c = 0 and d = 0 with those as the variables in the Taylor expansion
(as now done in the Pathria 3.29 problem), we can form a solution in short order. Given my
low midterm mark, it seems very likely that this was what was expected.

Answer for Exercise 1.2

The canonical partition function is

Z = /dxdydpxdpye’ﬁH

(1.13)
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With
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the momentum integrals are
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Part a. Attempt 1: differentiation under the integral sign  The mean energy is
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The specific heat follows by differentiating once more
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Differentiating the integral terms we have, for example,
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so that the specific heat is
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That’s as far as I took this problem. There was a discussion after the midterm with Eric about
Taylor expansion of these integrals. That’s not something that I tried.

Part b. Attempt 2: Taylor expanding in cand d ~ Performing a two variable Taylor expansion of Z, about
(c,d) =(0,0) we have
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Now we can calculate the average energy
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Dropping the c, d terms of the denominator above, we have
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The heat capacity follows immediately
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