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Midterm II reflection

Exercise 1.1 Magnetic field spin level splitting (2013 midterm II p1)

A particle with spin S has 2S + 1 states −S,−S + 1, · · · S − 1, S. When exposed to a magnetic field,
state splitting results in energy Em = h̄mB. Calculate the partition function, and use this to find the
temperature specific magnetization. A “sum the geometric series” hint was given.

Answer for Exercise 1.1
Our partition function is

(1.1)

Z =
S

∑
m=−S

e−h̄βmB

= e−h̄βSB
S

∑
m=−S

e−h̄β(m+S)B

= eh̄βSB
2S

∑
n=0

e−h̄βnB.

Writing

a = e−h̄βB, (1.2)

that is

(1.3)

Z = a−S
2S

∑
n=0

an

= a−S a2S+1 − 1
a − 1

=
aS+1 − a−S

a − 1

=
aS+1/2 − a−S−1/2

a1/2 − a−1/2
.
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Substitution of a gives us

Z =
sinh(h̄βB(S + 1/2))

sinh(h̄βB/2)
. (1.4)

To calculate the magnetization M, I used

M = − 〈H〉 /B. (1.5)

As [1] defines magnetization for a spin system. It was pointed out to me after the test that magne-
tization was defined differently in class as

µ =
∂B
∂F

. (1.6)

These are, up to a sign, identical, at least in this case, since we have β and B traveling together in
the partition function.

In terms of the average energy

(1.7)

M = −〈H〉
B

=
1
B

∂

∂β
ln Z(βB)

=
1

ZB
∂

∂β
Z(βB)

=
1
Z

∂

∂(βB)
Z(βB)

Compare this to the in-class definition of magnetization

(1.8)

µ =
∂F
∂B

=
∂

∂B
(
−kBT ln Z(βB)

)
= − ∂

∂B
ln Z(βB)

β

= − 1
βZ

∂

∂B
Z(βB)

= − 1
Z

∂

∂(βB)
Z(βB).

Defining the magnetic moment in either of these fashions is really a cheat, because it’s done without
any connection to physics of the situation. In §3.9 of [2] is a much better seeming approach, where
the moment is defined as Mz = − 〈µ ·H〉 /H, but this is then shown to have the form eq. (1.8).
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Calculating it For this derivative we have

(1.9)

∂

∂(βB)
ln Z =

∂

∂(βB)
ln

sinh(h̄βB(S + 1/2))
sinh(h̄βB/2)

=
∂

∂(βB)
(
ln sinh(h̄βB(S + 1/2))− ln sinh(h̄βB/2)

)
=

h̄
2
(
(2S + 1) coth(h̄βB(S + 1/2))− coth(h̄βB/2)

)
.

This gives us

(1.10)
µ = − 1

Z
h̄
2
(
(2S + 1) coth(h̄βB(S + 1/2))− coth(h̄βB/2)

)
= − sinh(h̄βB/2)

sinh(h̄βB(S + 1/2))
h̄
2
(
(2S + 1) coth(h̄βB(S + 1/2))− coth(h̄βB/2)

)
After some simplification (done offline in notes/phy452/mathematica/midtermTwoQ1FinalSimplificationMu.nb)

we get

µ = h̄
(s + 1) sinh(h̄βBs)− s sinh(h̄βB(s + 1))

cosh(h̄βB(2s + 1))− 1
. (1.11)

I got something like this on the midterm, but recall doing it somehow much differently.

Exercise 1.2 Perturbation of classical harmonic oscillator (2013 midterm II p2)

Consider a single particle perturbation of a classical simple harmonic oscillator Hamiltonian

H =
1
2

mω2 (x2 + y2) +
1

2m

(
p2

x + p2
y

)
+ ax4 + by6 (1.12)

Calculate the canonical partition function, mean energy and specific heat of this system.
a. This problem can be attempted in two ways, the first of which was how I did it on the midterm,

differentiating under the integral sign, leaving the integrals in exact form, but not evaluated
explicitly in any way.

b. By Taylor expanding around c = 0 and d = 0 with those as the variables in the Taylor expansion
(as now done in the Pathria 3.29 problem), we can form a solution in short order. Given my
low midterm mark, it seems very likely that this was what was expected.

Answer for Exercise 1.2
The canonical partition function is

(1.13)
Z =

∫
dxdydpxdpye−βH

=
∫

dxe−β( 1
2 mω2x2+ax4)

∫
dye−β( 1

2 mω2y2+by6)
∫

dpxdpye−βp2
x/2me−βp2

y/2m.
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With

(1.14a)u =

√
β

2m
px

(1.14b)v =

√
β

2m
py,

the momentum integrals are

(1.15)
∫

dpxdpye−βp2
x/2me−βp2

y/2m =
2m
β

∫
dudue−u2−v2

=
m
β

2π
∫

2rdre−r2
=

2πm
β

.

Writing

(1.16a)f (x) =
1
2

mω2x2 + ax4

(1.16b)g(x) =
1
2

mω2y2 + by6,

we have

(1.17)Z =
2πm

β

∫
dxe−β f (x)

∫
dye−βg(y).

Part a. Attempt 1: differentiation under the integral sign The mean energy is

(1.18)

〈H〉 =

∫
He−βH∫
e−βH

= − ∂

∂β
ln
∫

e−βH

=
∂

∂β

(
ln β − ln

∫
dxe−β f (x) − ln

∫
dye−βg(y)

)
=

1
β

+

∫
dx f (x)e−β f (x)∫

dxe−β f (x) +

∫
dyg(y)e−βg(y)∫

dye−βg(y) .

The specific heat follows by differentiating once more

(1.19)

CV =
∂〈H〉

∂T

=
∂β

∂T
∂〈H〉

∂β

= − 1
kBT2

∂〈H〉
∂β

= −kBβ2 ∂〈H〉
∂β

= −kBβ2

(
− 1

β2 +
∂

∂β

(∫
dx f (x)e−β f (x)∫

dxe−β f (x) +

∫
dyg(y)e−βg(y)∫

dye−βg(y)

))
.
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Differentiating the integral terms we have, for example,

(1.20)
∂

∂β

∫
dx f (x)e−β f (x)∫

dxe−β f (x) = −
∫

dx f 2(x)e−β f (x)∫
dxe−β f (x) +

(∫
dx f (x)e−β f (x)∫

dxe−β f (x)

)2

,

so that the specific heat is

CV = kB

1 +

∫
dx f 2(x)e−β f (x)∫

dxe−β f (x) −
(∫

dx f (x)e−β f (x)∫
dxe−β f (x)

)2

+

∫
dyg2(y)e−βg(y)∫

dye−βg(y) −
(∫

dyg(y)e−βg(y)∫
dye−βg(y)

)2
 .

(1.21)

That’s as far as I took this problem. There was a discussion after the midterm with Eric about
Taylor expansion of these integrals. That’s not something that I tried.

Part b. Attempt 2: Taylor expanding in c and d Performing a two variable Taylor expansion of Z, about
(c, d) = (0, 0) we have

(1.22)
Z ≈ 2πm

β

∫
dxdye−βmω2x2/2e−βmω2y2/2

(
1− βax4 − βby6

)
=

2πm
β

2π

βmω2

(
1− βa

3! !
(βmω2)2 − βb

5! !
(βmω2)3

)
,

or

(1.23)Z ≈ (2π/ω)2

β2

(
1− 3a

β(mω2)2 −
15b

β2(mω2)3

)
.

Now we can calculate the average energy

(1.24)

〈H〉 = − ∂

∂β
ln Z

= − ∂

∂β

(
−2 ln β + ln

(
1− 3a

β(mω2)2 −
15b

β2(mω2)3

))
=

2β

−

3a
β2(mω2)2 + 30b

β3(mω2)3

1− 3a
β(mω2)2 − 15b

β2(mω2)3

.

Dropping the c, d terms of the denominator above, we have

(1.25)〈H〉 =
2β

−
3a

β2(mω2)2 −
30b

β3(mω2)3 .

The heat capacity follows immediately

CV =
1
kB

∂〈H〉
∂T

= 2− 6akBT
(mω2)2 −

90k2
BT2b

(mω2)3 . (1.26)
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