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1D pendulum problem in phase space

Problem 2.6 in [1] asks for some analysis of the (presumably small angle) pendulum problem in phase
space, including an integration of the phase space volume energy and period of the system to the area
A included within a phase space trajectory. With coordinates as in fig. 1.1, our Lagrangian is

Figure 1.1: 1d pendulum

L =
1
2

ml2θ̇2 − gml(1− cos θ). (1.1)

As a sign check we find for small θ from the Euler-Lagrange equations θ̈ = −(g/l)θ as expected.
For the Hamiltonian, we need the canonical momentum

pθ =
∂L
∂θ̇

= ml2θ̇. (1.2)

Observe that this canonical momentum does not have dimensions of momentum, but that of an-
gular momentum (mlθ̇ × l).

Our Hamiltonian is

H =
1

2ml2 p2
θ + gml(1− cos θ). (1.3)
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Hamilton’s equations for this system, in matrix form are

d
dt

[
θ
pθ

]
=

[
∂H
∂pθ

− ∂H
∂θ

]
=
[

pθ/ml2

−gml sin θ

]
(1.4)

With ω = g/l, it is convient to non-dimensionalize this

d
dt

[
θ

pθ/ωml2

]
= ω

[
pθ/ωml2

− sin θ

]
. (1.5)

Now we can make the small angle approximation. Writing

u =
[

θ
pθ/ωml2

]
(1.6a)

i =
[

0 1
−1 0

]
(1.6b)

Our pendulum equation is reduced to

u′ = iωu, (1.7)

With a solution that we can read off by inspection

u = eiωtu0 =
[

cos ωt sin ωt
− sin ωt cos ωt

]
u0 (1.8)

Let’s put the initial phase space point into polar form

(1.9)

u2
0 = θ2

0 +
p2

0
ω2m2l4

=
2

ω2ml2

(
p2

0
2ml2 +

1
2

ω2ml2θ2
0

)
=

2
gml

(
p2

0
2ml2 +

1
2

gmlθ2
0

)
This doesn’t appear to be an exact match for eq. (1.3), but we can write for small θ0

(1.10)

1− cos θ0 = 2 sin2
(

θ0

2

)
≈ 2

(
θ0

2

)2

=
θ2

0
2

.

This shows that we can rewrite our initial conditions as
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u0 =

√
2E
gml

eiφ
[

1
0

]
, (1.11)

where

tan φ =
(
ωml2θ0/p0

)
. (1.12)

Our time evolution in phase space is given by[
θ(t)
pθ(t)

]
=

√
2E
gml

[
cos(ωt + φ)

−ωml2 sin(ωt + φ)

]
, (1.13)

or

[
θ(t)
pθ(t)

]
=

1
ωl

√
2E
m

[
cos(ωt + φ)

−ωml2 sin(ωt + φ)

]
. (1.14)

This is plotted in fig. 1.2.

Figure 1.2: Phase space trajectory for small angle pendulum

The area of this ellipse is

(1.15)
A = π

1
ω2l2

2E
m

ωml2

=
2π

ω
E.

With τ for the period of the trajectory, this is

A = τE. (1.16)

As a final note, observe that the oriented integral from problem 2.5 of the text
∮

pθdθ, is also this
area. This is a general property, which can be seen geometrically in fig. 1.3, where we see that the
counterclockwise oriented integral of

∮
pdq would give the negative area. The integrals along the

c4, c1 paths give the area under the blob, whereas the integrals along the other paths where the sense

3



Figure 1.3: Area from oriented integral along path

is opposite, give the complete area under the top boundary. Since they are oppositely sensed, adding
them gives just the area of the blob.

Let’s do this
∮

pθdθ integral for the pendulum phase trajectories. With

θ =
1

ωl

√
2E
m

cos(ωt + φ) (1.17a)

pθ = −ml

√
2E
m

sin(ωt + φ) (1.17b)

We have

(1.18)

∮
pθdθ =

ml
ωl

2E
m

∫ 2π/ω

0
sin2(ωt + φ)ωdt

= 2E
∫ 2π/ω

0

1− cos
(
2(ωt + φ)

)
2

dt

= E
2π

ω
= Eτ.
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