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Relativistic generalization of statistical mechanics

1.1 Motivation

I was wondering how to generalize the arguments of [1] to relativistic systems. Here’s a bit of blun-
dering through the non-relativistic arguments of that text, tweaking them slightly.

I’m sure this has all been done before, but was a useful exercise to understand the non-relativistic
arguments of Pathria better.

1.2 Generalizing from energy to four momentum

Generalizing the arguments of §1.1.
Instead of considering that the total energy of the system is fixed, it makes sense that we’d have to

instead consider the total four-momentum of the system fixed, so if we have N particles, we have a
total four momentum

P = ∑
i

niPi = ∑ ni (εi/c, pi) , (1.1)

where ni is the total number of particles with four momentum Pi. We can probably expect that the
ni’s in this relativistic system will be smaller than those in a non-relativistic system since we have
many more states when considering that we can have both specific energies and specific momentum,
and the combinatorics of those extra degrees of freedom. However, we’ll still have

(1.2)N = ∑
i

ni.

Only given a specific observer frame can these these four-momentum components (εi/c, pi) be
expressed explicitly, as in

(1.3a)εi = γimic2

(1.3b)pi = γimvi

(1.3c)γi =
1√

1− v2
i /c2

,

where vi is the velocity of the particle in that observer frame.
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1.3 Generalizing the number if microstates, and notion of thermodynamic equilibrium

Generalizing the arguments of §1.2.
We can still count the number of all possible microstates, but that number, denoted Ω(N, V, E), for

a given total energy needs to be parameterized differently. First off, any given volume is observer
dependent, so we likely need to map

(1.4)
V →

∫
d4x

=
∫

dx0 ∧ dx1 ∧ dx2 ∧ dx3.

Let’s still call this V, but know that we mean this to be four volume element, bounded in both
space and time, referred to a fixed observer’s frame. So, lets write the total number of microstates as

(1.5)Ω(N, V, P) = Ω
(

N,
∫

d4x, E/c, P1, P2, P3
)

,

where P = (E/c, P) is the total four momentum of the system. If we have a system subdivided into
to two systems in contact as in fig. 1.1, where the two systems have total four momentum P1 and P2
respectively.

Figure 1.1: Two physical systems in thermal contact

In the text the total energy of both systems was written

(1.6)E(0) = E1 + E2,

so we’ll write

P(0)µ
= Pµ

1 + Pµ
2 = constant, (1.7)

so that the total number of microstates of the combined system is now

(1.8)Ω(0)(P1, P2) = Ω1(P1)Ω2(P2).

As before, if Pµ
i denotes an equilibrium value of Pµ

i , then maximizing eq. (1.8) requires all the
derivatives (no sum over µ here)
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(1.9)

(
∂Ω1(P1)

∂Pµ
1

)
P1=P1

Ω2(P2) + Ω1(P1)
(

∂Ω2(P2)
∂Pµ

)
P2=P2

× ∂Pµ
2

∂Pµ
1

= 0.

With each of the components of the total four-momentum Pµ
1 + Pµ

2 separately constant, we have
∂Pµ

2 /∂Pµ
1 = −1, so that we have

(1.10)

(
∂ln Ω1(P1)

∂Pµ
1

)
P1=P1

=
(

∂ln Ω2(P2)
∂Pµ

)
P2=P2

,

as before. However, we now have one such identity for each component of the total four momen-
tum P which has been held constant. Let’s now define

(1.11)βµ ≡
(

∂ln Ω(N, V, P)
∂Pµ

)
N,V,P=P

,

Our old scalar temperature is then

(1.12)

β0 = c
(

∂ln Ω(N, V, P)
∂E

)
N,V,P=P

= cβ

=
c

kBT
,

but now we have three additional such constants to figure out what to do with. A first start would
be figuring out how the Boltzmann probabilities should be generalized.

Equilibrium between a system and a heat reservoir Generalizing the arguments of §3.1.
As in the text, let’s consider a very large heat reservoir A′ and a subsystem A as in fig. 1.2 that has

come to a state of mutual equilibrium. This likely needs to be defined as a state in which the four
vector βµ is common, as opposed to just β0 the temperature field being common.

Figure 1.2: A system A immersed in heat reservoir A′

If the four momentum of the heat reservoir is P′r with Pr for the subsystem, and

Pr + P′r = P(0) = constant. (1.13)

3



Writing

Ω′(Pµ
r
′
) = Ω′(P(0) − Pµ

r ) ∝ Pr, (1.14)

for the number of microstates in the reservoir, so that a Taylor expansion of the logarithm around
P′r = P(0) (with sums implied) is

(1.15)ln Ω′(Pµ
r
′
) = ln Ω′(P(0)) +

(
∂ln Ω′

∂Pµ ′

)
P′=P(0)

(
P(0) − Pµ

)
≈ constant− β′µPµ.

Here we’ve inserted the definition of βµ from eq. (1.11), so that at equilibrium, with β′µ = βµ, we
obtain

Ω′(Pµ
r
′
) = exp

(
−βµPµ

)
= exp (−βE) exp

(
−β1P1

)
exp

(
−β2P3) exp

(
−β3P3) . (1.16)

1.4 Next steps

This looks consistent with the outline provided in http://physics.stackexchange.com/a/4950/3621
by Lubos to the stackexchange “is there a relativistic quantum thermodynamics” question. I’m sure
it wouldn’t be too hard to find references that explore this, as well as explain why non-relativistic stat
mech can be used for photon problems. Further exploration of this should wait until after the studies
for this course are done.
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