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A sample diode RLC circuit

To get a feel for how to generate the MLN equations for a circuit that has both RLC and non-linear
components, consider the circuit of fig. 1.1.

Figure 1.1: An RLC circuit with a diode.

The KCL equations for this circuit are

1. 0 = is − id

2. iL + v2−v3
R = id

3. v3−v2
R + C dv3

dt = 0

4. −v2 + L diL
dt = 0

5. id = I0

(
e(v1−v2)/vT − 1

)
With Z = 1/R, these can be put into the standard MLN matrix form as


0 0 0 0
0 Z −Z 1
0 −Z Z 0
0 −1 0 0




v1
v2
v3
iL

 +


0 0 0 0
0 0 0 0
0 0 C 0
0 0 0 L




v1
v2
v3
iL


′

=


I0 1
−I0 0

0 0
0 0

 [ 1
is(t)

]
+


−I0
I0
0
0

 [e(v2−v3)/vT
]

(1.1)
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Let’s write this as

GX(t) + CẊ(t) = Bu(t) + Dw(t). (1.2)

Here u(t) collects up all the unique signature sources (for example sources with each different
frequency in the system), and w(t) is a vector of all the unique non-linear (time dependent) terms.

Assuming a bandwidth limited periodic source we know how to express any of the time dependent
variables v1, ... in terms of their (discrete) Fourier transforms. Suppose that the Fourier coefficients
for va(t), ub(t), wc(t) are given by

va(t) =
N

∑
n=−N

V(a)
n ejω0nt

ub(t) =
N

∑
n=−N

U(b)
n ejω0nt

wc(t) =
N

∑
n=−N

W(c)
n ejω0nt.

(1.3)

For example, in this circuit, if the source was zero phase signal at the fundamental frequency of our
Fourier basis (is(t) = ejω0t), the only non-zero Fourier components U(a)

n would be U(1)
0 = 1, U(2)

1 = 1.
First evaluating the derivatives, and then evaluating the result at each of the Nykvist times tk,

yields a (2N + 1)× 1 equations

0 =
N

∑
n=−N

ejnω0tk

(G + jω0nC)

V(1)
n

V(2)
n
...

− B

[
U(1)

n

U(2)
n

]
−D

[
W(1)

n

] (1.4)

With the assumption of periodicity, each of these equations must separately equal zero for each
(n, k) pair so that

(G + jω0nC)

V(1)
n

V(2)
n
...

 = B

[
U(1)

n

U(2)
n

]
+ D

[
W(1)

n

]
(1.5)

The next goal is to put this in block matrix form. First introducing discrete time sampling vectors

va =


va(t−N)
va(t1−N)

...
va(tN−1)
va(tN)

 , ua =


ub(t−N)
ub(t1−N)

...
ub(tN−1)
ub(tN)

 , wa =


wc(t−N)
wc(t1−N)

...
wc(tN−1)
wc(tN)

 , (1.6)

and Fourier component vectors
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Va =


V(a)
−N

V(a)
1−N
...

V(a)
N−1

V(a)
N

 , Ub =


U(b)
−N

U(b)
1−N
...

U(b)
N−1

U(b)
N

 , Wc =


W(c)
−N

W(c)
1−N
...

W(c)
N−1

W(c)
N

 . (1.7)

With α = e2π j/(2N+1), and

F =



αNN α(N−1)N · · · 1 · · · α−(N−1)N α−NN

αN(N−1) α(N−1)(N−1) · · · 1 · · · α−(N−1)(N−1) α−N(N−1)

...
...

...
...

...
...

...
1 1 1 1 1 1 1
...

...
...

...
...

...
...

α−N(N−1) α−(N−1)(N−1) · · · 1 · · · αN−1(N−1) αN(N−1)

α−NN α−NN · · · 1 · · · α(N−1)N αNN


, (1.8)

in each case the time domain sampling vectors are related to the Fourier components by relations
of the form

x = FX. (1.9)

1.1 Block matrix form, with physical parameter ordering

To understand how to put eq. (1.5) in block matrix form, it is helpful to consider a specific example.
Consider again the specific example of the RLC circuit above, which has the form

0 0 0 0
0 Z −Z 1
0 −Z Z + jω0nC 0
0 −1 0 +jω0nL




V(1)
n

V(2)
n

V(3)
n

I(L)
n

 =


I(1)
n

I(2)
n

I(3)
n

I(4)
n

 (1.10)

Here the I(i) terms are the DFT representations of both the linear and non-linear sources.
Suppose for example that N = 1. One way to write eq. (1.10) would be
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

I(1)
−1

I(1)
0

I(1)
1

I(2)
−1

I(2)
0

I(2)
1

I(3)
−1

I(3)
0

I(3)
1

I(4)
−1

I(4)
0

I(4)
1



=



0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

Z 0 0
0 Z 0
0 0 Z

−Z 0 0
0 −Z 0
0 0 −Z

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

−Z 0 0
0 −Z 0
0 0 −Z

Z 0 0
0 Z 0
0 0 Z

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

−1 0 0
0 −1 0
0 0 −1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0





V(1)
−1

V(1)
0

V(1)
1

V(2)
−1

V(2)
0

V(2)
1

V(3)
−1

V(3)
0

V(3)
1

I(L)
−1

I(L)
0

I(L)
1



+



0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

jω0(−1)C 0 0
0 jω0(0)C 0
0 0 jω0(1)C

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

jω0(−1)L 0 0
0 jω0(0)L 0
0 0 jω0(1)L





V(1)
−1

V(1)
0

V(1)
1

V(2)
−1

V(2)
0

V(2)
1

V(3)
−1

V(3)
0

V(3)
1

I(L)
−1

I(L)
0

I(L)
1


(1.11)

With a vector of fourier coeffient vectors

V =


V(1)

V(2)

V(3)

I(L)

 , I =


I(1)

I(2)

I(3)

I(4)

 . (1.12)

and a (2N + 1)× (2N + 1) matrix of indexes

N =


−N

1− N
. . .

N − 1
N

 , (1.13)
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the complete block diagonalization is[
grsI2N+1 + jω0crsN

]
rsV = I. (1.14)

1.2 Block matrix form, with frequency ordering

It turns out that a better way of ordering the vector of Fourier components is using a frequency
ordering that interleaves the physical parameters. With such an ordering the DFT MNA equations
are

I =



I(1)
−1

I(2)
−1

I(3)
−1

I(4)
−1

I(1)
0

I(2)
0

I(3)
0

I(4)
0

I(1)
1

I(2)
1

I(3)
1

I(4)
1



+



0 0 0 0
0 Z −Z 1
0 −Z Z 0
0 −1 0 0

0 0

0

0 0 0 0
0 Z −Z 1
0 −Z Z 0
0 −1 0 0

0

0 0

0 0 0 0
0 Z −Z 1
0 −Z Z 0
0 −1 0 0





V(1)
−1

V(2)
−1

V(3)
−1

I(L)
−1

V(1)
0

V(2)
0

V(3)
0

I(L)
0

V(1)
1

V(2)
1

V(3)
1

I(L)
1



+ jω0



(−1)


0 0 0 0
0 0 0 0
0 0 C 0
0 0 0 L

 0 0

0 (0)


0 0 0 0
0 0 0 0
0 0 C 0
0 0 0 L

 0

0 0 (1)


0 0 0 0
0 0 0 0
0 0 C 0
0 0 0 L







V(1)
−1

V(2)
−1

V(3)
−1

I(L)
−1

V(1)
0

V(2)
0

V(3)
0

I(L)
0

V(1)
1

V(2)
1

V(3)
1

I(L)
1



(1.15)

This ordering matches that of [1].
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1.3 Representing the linear sources

Assuming real sources with frequencies that are only multiples of the fundamental harmonic, a rea-
sonable way to represent them in storage is with a pair of matrices[

I ∼ Bω
]

. (1.16)

If R is the dimension of G and C, then B is a R× S dimension matrix, where S is the sum of

• 1, if there are any DC sources, plus

• 2 times the number of unique frequency sources.

For example, if there is a DC source and one AC source with frequency ν, then for column vectors
bi this pair is of the form

Uω =
[
b−1 b0 b1

] −2πν
0

2πν

 . (1.17)

This representation produces the time domain representation exactly when there are only DC
sources, and can be used to construct the Fourier coefficients by inspection when there are AC
sources. For example, for N = 1 in the example above, the Fourier coefficent vector is

I =

b−1
b0
b1

 . (1.18)

If N = 2 was used, then we would have instead

I =


0

b−1
b0
b1
0

 . (1.19)

1.4 Representing non-linear sources

The time domain MNA eq. (1.2) include a wide range of matrix dimensions. It is now clear how
to handle the transition to the frequency domain for all the linear terms. Working a simple diode
example to understand how to handle the non-linear terms is useful. Consider the circuit of fig. 1.2.

With Z = 1/R, Zg = 1/Rg, the KCL equations are

1. (v1 − v2) Zs = is − id

2. (v2 − v1) Zs + v2Zg = −is + id
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Figure 1.2: Simple diode circuit

Using the model id = I(0)
(

e(v1−v2)/VT − 1
)

, with source is = I(s) cos(ω0t), this has the block matrix
form

G =
[

Zs −Zs
−Zs Zs + Zg

]
, x =

[
v1(t)
v2(t)

]
(1.20a)

B =
[

I(s)/2 −I(0) I(s)/2
−I(s)/2 I(0) −I(s)/2

]
, u(t) =

e−jω0t

1
ejω0t

 (1.20b)

D =
[

I(0)

−I(0)

]
, w(t) = e(v1(t)−v2(t))/VT . (1.20c)

If En is the nth DFT coefficient for e(t) = e(v1(t)−v2(t))/VT , then the DFT equations for the N = 1 DFT is(
V(1)
−1 −V(2)

−1

)
Zs = I(s)/2− I(0)E−1(

V(2)
−1 −V(1)

−1

)
Zs + V(2)

−1Zg = −I(s)/2 + I(0)E−1(
V(1)

0 −V(2)
0

)
Zs = I(0) − I(0)E0(

V(2)
0 −V(1)

0

)
Zs + V(2)

0 Zg = −I(0) + I(0)E0(
V(1)

1 −V(2)
1

)
Zs = I(s)/2− I(0)E1(

V(2)
1 −V(1)

1

)
Zs + V(2)

1 Zg = −I(s)/2 + I(0)E1

(1.21)

Let b = [b−1 b0 b1], and D = [d1]. The block matrix equivalent form, by inspection, is
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G 0 0
0 G 0
0 0 G




V(1)
−1

V(2)
−1

V(1)
0

V(2)
0

V(1)
1

V(2)
1


=

b−1
b0
b1

 +

d1E−1
d1E0
d1E1

 . (1.22)

This shows the stamping pattern required to form the non-linear portion of the Harmonic balance
equations. The general pattern can be written as

YV = I + I(V), (1.23)

Here Y is block diagonal, and in general has blocks of G + jω0nC. The matrix I was generated from
the Fourier coeffients of all the linear sources, and I(V) encodes all the non-linear contributions to
the system.

More general non-linear structure, for multiple diodes For the diode exponentials, these non-linear term
will be of the form

Dw(t) =
[
d1 d2 · · · dS

]


w1(t)
w2(t)

...
wS(t)

 , (1.24)

where wi(t) = exp((vi,1(t)− vi,2(t))/VT,i). If the DFT coordinates of these functions are E(i)
n , then the

frequency domain representation is

I(V) =
S

∑
i=1


diE

(i)
−N

diE
(i)
1−N
...

diE
(i)
N−1

diE
(i)
N

 . (1.25)

This is a R(2N + 1)× 1 matrix, as expected.
The computation of these DFT coordinates is a bit messy since they are time dependent, and thus

dependent on the (unknown) values of V(1)
n . Consider the above circuit as an example where we have

w(t) = exp ((v1(t)− v2(t))/VT) . (1.26)

The DFT inverse is

En =
N

∑
k=−N

exp ((v1(tk)− v2(tk))/VT) e−jω0ntk . (1.27)
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With E = (E−N , E1−N , · · · , EN−1, EN), this is

(1.28)

E =
1

2N + 1
F



exp
(

(v(1)
−N − v(2)

−N)/vT

)
exp

(
(v(1)

1−N − v(2)
1−N)/vT

)
...

exp
(

(v(1)
N−1 − v(2)

N−1)/vT

)
exp

(
(v(1)

N − v(2)
N )/vT

)



=
1

2N + 1
F


exp

(
[F(V(1) − V(2))/vT]−N

)
exp

(
[F(V(1) − V(2))/vT]1−N

)
...

exp
(
[F(V(1) − V(2))/vT]N−1

)
exp

(
[F(V(1) − V(2))/vT]N

)

 .

With the introduction a term by term exponentiation operator

exp[x] =

exp(x1)
exp(x2)

...

 , (1.29)

this one Fourier coefficient vector is

E =
1

2N + 1
F exp[F(V(1) −V(2))/vT]. (1.30)

This is now completely expressed in terms of the unknown Fourier component vectors, each a
subset of the aggreggated “voltage”, range selectable with the Matlab operation V(i) = V(i : R : end).

1.5 Newton’s method

In order to solve the system, Newton’s method on the Fourier coeffients is required. Solutions to
F (V) = 0 are sought, where

F (V) = YV− I− I(V). (1.31)

Here the sources current vector DFT coordinates have been split into the linear contributions I and
nonlinear contributions I defined by eq. (1.25).

Working with ones-indexed coordinates of V = [Vk]k, where k ∈ [1, R(2N + 1)], the Jacobian is

J = Y− [∂Ir/∂Vs]rs. (1.32)

To calculate these partials we need the partials of the coordinates of E of eq. (1.30). The kth coordi-
nate of V(1), V(2) in terms of the coordinates of the R(2N + 1) vector of unknowns V are
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[V(1)]k = V1+(k−1)R

[V(2)]k = V2+(k−1)R
(1.33)

Using summation convention, with sums over any repeated indexes implied, those coordinates are

Er =
1

2N + 1
Fra exp

(
Fab(V1+(b−1)R −V2+(b−1)R)/vT

)
. (1.34)

The partials now follow immediately

∂Er

∂Vs
=

1
2N + 1

1
vT

FraFab exp
(

Fab(V1+(b−1)R −V2+(b−1)R)/vT
) (

δs,1+(b−1)R − δs,2+(b−1)R
)

. (1.35)

Generalization To generalize this, suppose that the diode exponential was associated with voltages
spanning nodes m, n so that

E =
1

2N + 1
F exp[F(V(m) −V(n))/vT]. (1.36)

In this case, the coordinates of the physical “voltages” are

[V(m)]k = Vm+(k−1)R

[V(n)]k = Vn+(k−1)R
, (1.37)

so

Er =
1

2N + 1
Fra exp

(
Fab(Vm+(b−1)R −Vn+(b−1)R)/vT

)
. (1.38)

The Jacobian partials are

∂Er

∂Vs
=

1
2N + 1

1
vT

FraFab exp
(

Fab(Vm+(b−1)R −Vn+(b−1)R)/vT
) (

δs,m+(b−1)R − δs,n+(b−1)R
)

. (1.39)

Note that this Jacobian

JE =
[

∂Er
∂Vs

]
rs

(1.40)

is a (2N + 1)× R(2N + 1) matrix.
The full Jacobian of I(V) is

JI (V) =
S

∑
i=1



di
∂E(i)
−N

∂V

di
∂E(i)

1−N
∂V
...

di
∂E(i)

N−1
∂V

di
∂E(i)

N
∂V


. (1.41)
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Where ∂E(i)
k /∂V is the kth row of JE(i) . The complete Jacobian is

J = Y− JI (V). (1.42)

1.6 A matrix formulation of Harmonic Balance non-linear currents

Because it was simple, a coordinate expansion of the Jacobian of the non-linear currents was good to
get a feeling for the structure of the equations. However, a Jacobian of that form is impossibly slow to
compute for larger N. It seems plausible that eliminating the coordinate expansion, expressing both
the currrent and the Jacobian directly in terms of the Harmonic Balance unknowns vector V, would
lead to a simpler set of equations that could be implemented in a computationally more effective
way.

To aid in this discovery, consider the simple RC load diode circuit of fig. 1.3. It’s not too hard to
start from scratch with the time domain nodal equations for this circuit, which are

Figure 1.3: Simple diode and resistor circuit

1. 0 = is − id

2. Zv(2) + Cdv(2)/dt = id

3. id = I0

(
e(v(1)−v(2))/VT − 1

)
To setup for matrix form, let

v(t) =
[

v(1)(t)
v(2)(t)

]
(1.43a)

G =
[

0 0
0 Z

]
(1.43b)
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C =
[

0 0
0 C

]
(1.43c)

d =
[

1
−1

]
(1.43d)

b =
[

1
0

]
, (1.43e)

so that the time domain equations can be written as

(1.44)
Gv(t) + Cv′(t) = bis(t) + I0d

(
e(v(1)(t)−v(2)(t))/VT − 1

)
=
[
b −I0d

] [is(t)
1

]
+ I0de(v(1)(t)−v(2)(t))/VT .

Harmonic Balance is essentially the assumption that the input and outputs are assumed to be a
bandwidth limited periodic signal, and the non-linear components can be approximated by the same

is(t) =
N

∑
n=−N

I(s)
n ejω0nt, (1.45a)

v(k)(t) =
N

∑
n=−N

V(k)
n ejω0nt, (1.45b)

ε(t) = e(v(1)(t)−v(2)(t))/VT '
N

∑
n=−N

Enejω0nt, (1.45c)

The approximation in eq. (1.45c) is an equality only at the Nykvist sampling times tk = Tk/(2N + 1).
The Fourier series provides a periodic extension to other times that will approximate the underlying
periodic non-linear relation.

With all the time dependence locked into the exponentials, the derivatives are really easy to calcu-
late

d
dt

v(k)(t) =
N

∑
n=−N

jω0nV(k)
n ejω0nt. (1.46)

Inserting all of these into eq. (1.44) gives

N

∑
n=−N

ejω0nt (G + jω0nC)

[
V(1)

n

V(2)
n

]
=

N

∑
n=−N

ejω0nt
(
−I0dδn0 + bI(s)

n + I0dEn

)
. (1.47)

The periodic assumption requires equality for each ejω0nt, or

(G + jω0nC)

[
V(1)

n

V(2)
n

]
= −I0dδn0 + bI(s)

n + I0dEn. (1.48)

For illustration, consider the N = 1 case, where the block matrix form is
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G + jω0(−1)C 0 0
0 G + jω0(0)C 0
0 0 G + jω0(1)C




[
V(1)
−1

V(2)
−1

]
[

V(1)
0

V(2)
0

]
[

V(1)
1

V(2)
1

]


=

 bI(s)
−1

bI(s)
0 − I0d
bI(s)

1

 + I0

dE−1
dE0
dE1

 . (1.49)

The structure of this equation is

YV = I + I(V), (1.50)

The non-linear current I(V) needs to be examined further. How much of this can be precomputed,
and what is the simplest way to compute the Jacobian?

With

E =

E−1
E0
E1

 , ε =

ε−1
ε0
ε1

 , (1.51)

the non-linear current is

(1.52)

I = I0

dE−1
dE0
dE1


= I0

d
[
1 0 0

]
E

d
[
0 1 0

]
E

d
[
0 0 1

]
E


= I0

d 0 0
0 d 0
0 0 d

 F−1ε

In the last step E = F−1ε has been factored out (in its inverse Fourier form). With

(1.53)D =

d 0 0
0 d 0
0 0 d

 ,

the current is

I(V) = I0DF−1ε(V). (1.54)

The next step is finding an appropriate form for ε
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(1.55)

ε =

ε(t−1)
ε(t0)
ε(t1)



=


exp

((
v(1)
−1 − v(2)

−1

)
/VT

)
exp

((
v(1)

0 − v(2)
0

)
/VT

)
exp

((
v(1)

1 − v(2)
1

)
/VT

)


=

exp
([

1 0 0
] (

v(1) − v(2)) /VT
)

exp
([

0 1 0
] (

v(1) − v(2)) /VT
)

exp
([

0 0 1
] (

v(1) − v(2)) /VT
)


=

exp
([

1 0 0
]

F
(
V(1) − V(2)) /VT

)
exp

([
0 1 0

]
F
(
V(1) − V(2)) /VT

)
exp

([
0 0 1

]
F
(
V(1) − V(2)) /VT

)
 .

It would be nice to have the difference of frequency domain vectors expressed in terms of V, which
can be done with a bit of rearrangement

(1.56)

V(1) − V(2) =

V(1)
−1 − V(2)

−1
V(1)

0 − V(2)
0

V(1)
1 − V(2)

1



=

1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1




V(1)
−1

V(2)
−1

V(1)
0

V(2)
0

V(1)
1

V(2)
1


=

dT 0 0
0 dT 0
0 0 dT

V

= DTV,

H = FDT/VT =

hT
1

hT
2

hT
3

 , (1.57)

which allows the non-linear current to can now be completely expressed in terms of V.

ε(V) =

ehT
1 V

ehT
2 V

ehT
3 V

 . (1.58)
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Jacobian With a compact matrix representation of the non-linear current, attention can now be
turned to the Jacobian of the non-linear current. Let A = I0DF−1 = [aij]ij, the current (with sum-
mation implied) is

(1.59)I =
[
aikεk,

]
with coordinates

(1.60)
Ii = aikεk

= aik exp
(

hT
k V
)

.

so the Jacobian components are

(1.61)

[JI ]ij = aikεk

= aik
∂

∂Vj
exp

(
hT

k V
)

= aikhkj exp
(

hT
k V
)

.

Factoring out U = [hij exp
(
hT

i V
)
]ij,

(1.62)

JI = AU

= A

[h11 h12 · · · h1,R(2N+1)
]

exp
(
hT

1 V
)[

h21 h22 · · · h2,R(2N+1)
]

exp
(
hT

2 V
)[

h31 h32 · · · h3,R(2N+1)
]

exp
(
hT

3 V
)


= A

hT
1 exp

(
hT

1 V
)

hT
2 exp

(
hT

2 V
)

hT
3 exp

(
hT

3 V
)
 .

A quick sanity check of dimensions seems worthwhile, and shows that all is well

• A : R(2N + 1)× 2N + 1

• U : 2N + 1× R(2N + 1)

• JI : R(2N + 1)× R(2N + 1)

The Jacobian of the non-linear current is now completely determined

JI (V) = I0DF−1

hT
1 exp

(
hT

1 V
)

hT
2 exp

(
hT

2 V
)

hT
3 exp

(
hT

3 V
)
 . (1.63)
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Newton’s method solution All the pieces required for a Newton’s method solution are now in place.
The goal is to find a value of V that provides the zero

(1.64)f (V) = YV − I − I(V).

Expansion to first order around an initial guess V0, gives

(1.65)f (V0 + ∆V) = f (V0) + J(V0)∆V
≈ 0,

where the full Jacobian of f (V) is

(1.66)J(V) = Y − JI (V).

The Newton’s method refinement of the initial guess follows by inversion

(1.67)∆V = −
(

Y − JI (V0)
)−1

f (V0).
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