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PHY1520H Graduate Quantum Mechanics. Lecture 22: More
perturbation. Taught by Prof. Arun Paramekanti

Disclaimer — Peeter’s lecture notes from class. These may be incoherent and rough.
These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof.
Paramekanti, covering ch. 5 [1] content.

Another approach (for last time?) Imagine we perturb a potential, say a harmonic oscillator with an
electric field

Vo(x) = %ka (1.1)

V(x) = Eex (1.2)

After minimizing the energy, using 0V /dx = 0, we get
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For such a system the polarizability is
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1.1 Van der Wall potential

Ho = Ho1 + Hop, (1.7)
where
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The full interaction potential is
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Let
X, =Ty — Ry, (1.10)
R=R; — Ry, (1.11)
as sketched in fig. 1.1.
Figure 1.1: Two atom interaction.
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which allows the total interaction potential to be written
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For R > x1, x,, this interaction potential, after a multipole expansion, is approximately
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1. O(A)
With

Yo = |1s, 1s) (1.15)
AED = (o] V o) (1.16)
The two particle wave functions are of the form

(x1,%2|0) = P1s(x1)P15(x2), (1.17)

so braket integrals must be evaluated over a six-fold space. Recall that

o= e T, (1.18)
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The x, y integrals are zero because of the ¢ integral, and the z integral is proportional to fon sin(20)d6,
which is also zero. This leads to zero averages
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This is a sum over all excited states.
We expect that this will be of the form
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x1 and x, are dipole operators. The first time this has a non-zero expectation is when we go from
the 1s to the 2p states (both 1s and 2s states are spherically symmetric).



Noting that E, = —e?/2n2ay, we can compute a minimum bound for the energy denominator
(Ex — Eo)™" =2 (Ezp — Exs)
1
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Note that the factor of two above comes from summing over the energies for both electrons. This
gives us

Co = %IEuI (ol V Ig0), (1.26)
where
V= (x1-x —3(x1 - R)(x2 - R)) (1.27)
What about degeneracy?
AED = ";1| ¢n(’)V|;PO>| (1.28)

If (Yu|V |[Pm) o Oum then it’s okay. In general the we can’t expect the matrix element will be
anything but fully populated, say

Vii. Viz Viz Vg
Vor Vo Vo3 Voy

V= , 1.29
Va1 Ve Va3 Vay (1.29)
Vio Vo Viz Vi
If we choose a basis so that
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When this is the case, we have no mixing of elements in the sum of eq. (1.28)
Degeneracy in the Stark effect
H = Hy +e&z, (1.31)
where
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Figure 1.2: 2s 2p degeneracy.

Consider the states 2s, 2py, 2py, 2p., for which Efqo) = Eys, as sketched in fig. 1.2.
Because of spherical symmetry
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Looking at odd and even properties, it turns out that the only off-diagonal matrix element is

(2s|e€z |2p,) = Vi = —3e&ay. (1.34)
With a {2s, 2px, 2py, 2p. } basis the potential matrix is

0 00 W
0 00 O
0 00 0 (1.35)
Vi 00 0
0 —|V1|]
1.36
o 130
implies that the energy splitting goes as
Eps — Eps = | V1], (1.37)

as sketched in fig. 1.3.

The diagonalizing states corresponding to eigenvalues +3a¢&, are (|2s) F |2p.))/V/2.

The matrix element above is calculated explicitly in lecture22Integrals.nb.

The degeneracy that is left unsplit here, and has to be accounted for should we attempt higher
order perturbation calculations.
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Figure 1.3: Stark effect energy level splitting.
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Appendix. Multipole expansion ~ Noting that

(1+e) V2=1-— %e - % <_23> %62 =1— %e+ gez, (1.38)
we have
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Inserting the values from the brackets of eq. (1.13) we have
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This proves eq. (1.14).

(1.40)
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