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Application of Stokes Theorem to Maxwell equation

The relativistic form of Maxwell’s equation in Geometric Algebra is

1
F=—], 1.1
VE= ] a
where V = 7#9,, is the spacetime gradient, and | = (cp, J) = /7, is the four (vector) current density.
The pseudoscalar for the space is denoted I = y¢7y17273, where the basis elements satisfy 'y% =1=
—'y,%, and a dual basis satisfies 7, - 7" = J;,. The electromagnetic field F is a composite multivector
F = E + IcB. This is actually a bivector because spatial vectors have a bivector representation in the
space time algebra of the form E = E¥v;,.
A dual representation, with F = IG is also possible
VG = i Ji (1.2)
Ccey '
Either form of Maxwell’s equation can be split into grade one and three components. The standard
(non-dual) form is

V- -F= i]
Ccep (1-3)
VAF=0,
and the dual form is
V-G=0
1.4
VAG= ] a4
Ceo

In both cases a potential representation F = V A A, where A is a four vector potential can be used
to kill off the non-current equation. Such a potential representation reduces Maxwell’s equation to

1

VF=) (1.5)
or I

VAG= . (1.6)



In both cases, these reduce to ,
V2A -V (V-A)=—]. (1.7)
CEQ

This can clearly be further simplified by using the Lorentz gauge, where V - A = 0. However, the
aim for now is to try applying Stokes theorem to Maxwell’s equation. The dual form eq. (1.6) has
the curl structure required for the application of Stokes. Suppose that we evaluate this curl over the
three parameter volume element d°x = i dx’dx'dx?, where i = 79172 is the unit pseudoscalar for the
spacetime volume element.

/Vde-(VAG)=/Vd3x.(7ﬂAayG)
- [ (@x-9") 2,6 18)
= / (d°x - 4") - 9,,G.
u# 7V

This uses the distibution identity A - (a A A;) = (As - a) - A» which holds for blades A;, A, provided
s > r > 0. Observe that only the component of the gradient that lies in the tangent space of the three
volume manifold contributes to the integral, allowing the gradient to be used in the Stokes integral
instead of the vector derivative (see: [1]). Defining the the surface area element

1
d*x = Zi oyt ——d3x
p#3 dxt
= Y1724dxdy + cy2v0dtdy + cyoy1dtdx,

Stokes theorem for this volume element is now completely specified
/d3x-(V/\G)=/ &2.G. (1.10)
14 Jov

Application to the dual Maxwell equation gives

d2x-G=1/ B - (1)). (1.11)
1% cey JV

After some manipulation, this can be restated in the non-dual form

1, 1 3
- = — . 1.12
/avldX/\F ceol/vdX/\] ( )

It can be demonstrated that using this with each of the standard basis spacetime 3-volume elements
recovers Gauss’s law and the Ampere-Maxwell equation. So, what happened to Faraday’s law and
Gauss’s law for magnetism? With application of Stokes to the curl equation from eq. (1.3), those
equations take the form

d*x-F =0. (1.13)
A%




Exercise 1.1

Demonstrate that the Ampere-Maxwell equation and Gauss’s law can be recovered from the trivec-
tor (curl) equation eq. (1.6).
Answer for Exercise 1.1

The curl equation is a trivector on each side, so dotting it with each of the four possible trivectors
YoY1Y2, Y023, Y0Y1Y3, Y1v2Y3 Will give four different scalar equations. For example, dotting with
Yo0Y1Y2, we have for the curl side

(Yor172) - (7" A 3uG) = (vom1172) - 7¥) - 9, G (1.14)
= (7071) - 92G + (7270) - 91G + (7172) - oG,

and for the current side, we have

1
— (ror1r2(vor17273)])
€oC
1
= —(—73J)

€<1>C (1.15)
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eic (Yom2) - (I]) =

_ L]?)
eoc’

so we have 1
(7071) - 92G + (1270) - 01G + (7172) - 900G = &ﬂ (1.16)

Similarily, dotting with 7013, Y023, and-y123 respectively yields
To1+35G + 72001 G + 713906 = =
Y02 * 935G + 13002G + 2390G = eicjl (1.17)
Y12 - 903G + 73102G + 72301 G = _610‘0'

Expanding the dual electromagnetic field, first in terms of the spatial vectors, and then in the space
time basis, we have
G=—IF
= —I(E+ IcB)
= —IE +cB. (1.18)
=—IE+ ch’yk’yo.

1
= EerSt'yr'ysEt + cBX 0.



So, dotting with a spatial vector will pick up a component of B, we have

1
(Ym N 70) - 904G = (Ym A Y0) - Oy (Ze’“%%Et + CBk'Yk’YO)

= 0, B* (Ym YoMk 0)
= CayBk<'Ym’)’O'YO’Yk>
= ¢, B},

= cd,B"™.

Written out explicitly the electric field contributions to G are

—IE = — Y1300 EF

= — sk EF
1E® k=3
={ ymE* k=2,
Y3 E! k=1
%)
123 G=—E
v31-G=—E?
Y12+ G =—E°.

We now have the pieces required to expand eq. (1.16) and eq. (1.17), which are respectively

1

—c0yB +¢0:1B%> — 9E> = —J°
€9C
1
—c93B' + c01B® + 9gE> = ——J?
€oC
1
—c03B? + c9,B® — 9pE' = — !
€oC
1

—83E3 — 82E2 — 81E1 =——p
€0

which are the components of the Ampere-Maxwell equation, and Gauss’s law

1 oE
%VXB—Gog—J
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Exercise 1.2

Prove eq. (1.12).

(1.19)
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Answer for Exercise 1.2
The proof just requires the expansion of the dot products using scalar selection

d*x - G = (d*x(~I)F)
= —I(d*x \F),

and for the three volume dot product

d*x - (I]) = (>« I])
- (1)) (1.25)
=—I(dPxN]).

Exercise 1.3

Using each of the four possible spacetime volume elements, write out the components of the Stokes
integral eq. (1.12).
Answer for Exercise 1.3

The four possible volume and associated area elements are

d3x = cyoy1Y2dtdxdy d?x = Y172dxdy + cy2yodydt + cyordtdx

d®x = cyoy1y3dtdxdz d?x = y1y3dxdz + cy3yodzdt + cygy1dtdx (1.26)

dx = cyoy2y3dtdydz d?x = Y2v3dydz + cy3yodzdt + cyoy2dtdy
dx = y17273dxdydz d*x = y172dxdy + y2y3dydz + cyzy1dzdx
Wedging the area element with F will produce pseudoscalar multiples of the various E and B
components, but a recipe for these components is required.

First note that for k # 0, the wedge v« A yo A F will just select components of B. This can be seen
tirst by simplifying

IB = Y0123B" Ymo

1 —
Y32B m=1 (1.27)
= ’)/1332 m=2 ,
yuB®  m=3
or
IB = —€pYap B. (1.28)
From this it follows that
Ye A vo A F = IcBF, (1.29)



The electric field components are easier to pick out. Those are selected by

Y A Y AF =Y Ayn Ay AyoEX (1.30)
= —IE*€ k.

The respective volume element wedge products with | are

1 1 41 1,1 1
SBINT= PP A= —PaPBr AT = — 1.31
[N CGOI Idx/\f ce0] IdxAI Ceof, (1.31)

and the respective sum of surface area elements wedged with the electromagnetic field are

1o 3 2 1
Td x \NF=—E ‘CAtdxdy+c(B |\, 4y — B ‘Aydx dt

1 2 _ 2 3 i

[XNF=E | pdxdz +c (B |\, 4z — B Ade) dt 15
1 _ _pl 3 2

Td xANF=—E ‘CAtdydz+c (B |Aydz— B }Azdy> dt

1

1P NF = — | dydx — F|, dvdz — E'| dzdy,

SO
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/av E |CAtdxdy+c <B ‘Axdy B ’Aydx) dt C/dedydtceo]
1
2 3 _pl - _ 2
/av E ‘CAtdxdz+c (B ]Axdz B Ade) dt C/vdxdydtce()] -
1 .
_rl 3 _ 2 _ 1 n
/av E CAtdydz+c (B ]Aydz B ]Azdy> dt c/vdxdydtceoj

1
3 2 1 -
/av —E°|, dydx — E ‘Aydxdz —E ’Axdzdy =— /dedydzeop.

Observe that if the volume elements are taken to their infinesimal limits, we recover the traditional
differential forms of the Ampere-Maxwell and Gauss’s law equations.
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